McArdle Laboratory for Cancer Research

Madison, WI, United States

McArdle Laboratory for Cancer Research

Madison, WI, United States
Time filter
Source Type

PubMed | McArdle Laboratory for Cancer Research, Tytgat Institute for Liver and Intestinal Research, University of Wisconsin - Madison and University of California at Los Angeles
Type: Comparative Study | Journal: Proceedings of the National Academy of Sciences of the United States of America | Year: 2014

It recently has been recognized that men develop colonic adenomas and carcinomas at an earlier age and at a higher rate than women. In the Apc(Pirc/+) (Pirc) rat model of early colonic cancer, this sex susceptibility was recapitulated, with male Pirc rats developing twice as many adenomas as females. Analysis of large datasets revealed that the Apc(Min/+) mouse also shows enhanced male susceptibility to adenomagenesis, but only in the colon. In addition, WT mice treated with injections of the carcinogen azoxymethane (AOM) showed increased numbers of colonic adenomas in males. The mechanism underlying these observations was investigated by manipulation of hormonal status. The preponderance of colonic adenomas in the Pirc rat model allowed a statistically significant investigation in vivo of the mechanism of sex hormone action on the development of colonic adenomas. Females depleted of endogenous hormones by ovariectomy did not exhibit a change in prevalence of adenomas, nor was any effect observed with replacement of one or a combination of female hormones. In contrast, depletion of male hormones by orchidectomy (castration) markedly protected the Pirc rat from adenoma development, whereas supplementation with testosterone reversed that effect. These observations were recapitulated in the AOM mouse model. Androgen receptor was undetectable in the colon or adenomas, making it likely that testosterone acts indirectly on the tumor lineage. Our findings suggest that indirect tumor-promoting effects of testosterone likely explain the disparity between the sexes in the development of colonic adenomas.

PubMed | McArdle Laboratory for Cancer Research and University of Wisconsin - Madison
Type: Journal Article | Journal: JCI insight | Year: 2016

Dermal white adipose tissue (dWAT) was recently recognized for its potential to modify whole body metabolism. Here, we show that dWAT can be quantified using a high-resolution, fat-specific magnetic resonance imaging (MRI) technique. Noninvasive MRI has been used to describe adipocyte depots for many years; the MRI technique we describe uses an advanced fat-specific method to measure the thickness of dWAT, together with the total volume of WAT and the relative activation/fat depletion of brown adipose tissues (BAT). Since skin-embedded adipocytes may provide natural insulation, they provide an important counterpoint to the activation of thermogenic brown and beige adipose tissues, whereby these distinct depots are functionally interrelated and require simultaneous assay. This method was validated using characterized mouse cohorts of a lipodystrophic, dWAT-deficient strain (syndecan-1 KO) and 2 obese models (diet-induced obese mice and genetically obese animals, ob/ob). Using a preliminary cohort of normal human subjects, we found the thickness of skin-associated fat varied 8-fold, from 0.13-1.10 cm; on average, this depot is calculated to weigh 8.8 kg.

PubMed | McArdle Laboratory for Cancer Research and University of Wisconsin - Madison
Type: Journal Article | Journal: The Journal of nutrition | Year: 2015

Epidemiologic studies in humans have shown associations between greater sunlight exposure, higher serum 25-hydroxycholecalciferol [25(OH)D3] concentrations, and reduced colon cancer risk. However, results from a limited number of vitamin D supplementation trials in humans have not shown a protective effect.We sought to determine whether adding to the diet increasing amounts of either 25(OH)D3, the stable metabolite measured in serum and associated with cancer risk, or cholecalciferol (vitamin D3), the compound commonly used for supplementation in humans, could reduce emergent adenomas (chemoprevention) or decrease the growth of existing adenomas (treatment) in the colons of vitamin D-sufficient rats carrying a truncation mutation of adenomatous polyposis coli (Apc), a model of early intestinal cancer.Apc(Pirc/+) rats were supplemented with either vitamin D3 over a range of 4 doses [6-1500 g/(kg body weight d)] or with 25(OH)D3 over a range of 6 doses [60-4500 g/(kg body weight d)] beginning after weaning. Rats underwent colonoscopy every other week to assess effects on adenoma number and size. At termination (140 d of age), the number of tumors in the small intestine and colon and the size of tumors in the colon were determined, and serum calcium and 25(OH)D3 measurements were obtained.At lower doses (those that did not affect body weight), neither of the vitamin D compounds reduced the number of existing or emergent colonic tumors (P-trend > 0.24). By contrast, supplementation at higher doses (those that caused a suppression in body weight gain) with either 25(OH)D3 or vitamin D3 caused a dose-dependent increase in colonic tumor number in both males and females (P-trend < 0.003).No evidence for protection against colon tumor development was seen with lower dose supplementation with either cholecalciferol or 25-hydroxycholecalciferol. Thus, the association between sunlight exposure and the incidence of colon cancer may involve factors other than vitamin D concentrations. Alternative hypotheses warrant investigation. Furthermore, this study provides preliminary evidence for the need for caution regarding vitamin D supplementation of humans at higher doses, especially in individuals with sufficient serum 25(OH)D3 concentrations.

Maufort J.P.,McArdle Laboratory for Cancer Research | Shai A.,McArdle Laboratory for Cancer Research | Shai A.,University of California at San Francisco | Pitot H.C.,McArdle Laboratory for Cancer Research | And 2 more authors.
Cancer Research | Year: 2010

A subset of the mucosotropic human papillomaviruses (HPV), including HPV16, are etiologic agents for the vast majority of cervical cancers, other anogenital cancers, and a subset of head and neck squamous cell carcinomas. HPV16 encodes three oncogenes: E5, E6, and E7. Although E6 and E7 have been well-studied and clearly shown to be important contributors to these cancers, less is known about E5. In this study, we used E5 transgenic mice to investigate the role of E5 in cervical cancer. When treated for 6 months with estrogen, a cofactor for cervical carcinogenesis, E5 transgenic mice developed more severe neoplastic cervical disease than similarly treated nontransgenic mice, although no frank cancers were detected. In addition, E5 when combined with either E6 or E7 induced more severe neoplastic disease than seen in mice expressing only one viral oncogene. Prolonged treatment of E5 transgenic mice with exogenous estrogen uncovered an ability of E5 to cause frank cancer. These data indicate that E5 acts as an oncogene in the reproductive tracts of female mice. © 2010 American Association for Cancer Research.

Shanle E.K.,University of Wisconsin - Madison | Onitilo A.A.,Marshfield Clinic Weston Center | Huang W.,University of Wisconsin - Madison | Kim K.M.,University of Wisconsin - Madison | And 4 more authors.
American Journal of Translational Research | Year: 2015

Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype for which there is a need to identify new therapeutic targets. Full-length estrogen receptor beta (ERβ1) may be a possible target given its antiproliferative effects on breast cancer cells. The prognostic significance of ERβ in breast cancer subtypes has remained elusive, and disparate results observed across previously published reports might be due to the detection of multiple ERβ isoforms, the lack of specific antibodies and the use of different cutoffs to define ERβpositivity. The objective of this retrospective study was to determine the association between ERβ1 expression and disease-free and overall survival, as well as Ki67 expression, in non-metastatic TNBC. Immunohistochemical protocols were optimized using xenograft tissues obtained from a breast cancer cell line with inducible ERβ1 expression. ERβ1 localization and expression were assessed in two cohorts of TNBC using the VECTRATM platform. There was a close relationship between nuclear and cytoplasmic ERβ1 expression. ERβ1 was expressed in a subset of TNBCs, but its expression was significantly associated with Ki67 in only one of the cohorts. There was no significant association between ERβ1 expression and disease-free and overall survival in either cohort. Although these results suggest that ERβ1 expression alone may not be informative in TNBCs, this study provides a new strategy for optimizing and objectively measuring ERβ1 expression in tissues, which may provide a standard for ERβ1 immunohistochemistry in future large-scale clinical studies aimed at better understanding the role of ERβ1 in breast cancer. © 2015, E-Century Publishing Corporation. All rights reserved.

Khan N.,University of Wisconsin - Madison | Afaq F.,University of Wisconsin - Madison | Afaq F.,University of Alabama at Birmingham | Khusro F.H.,University of Wisconsin - Madison | And 4 more authors.
International Journal of Cancer | Year: 2012

Lung cancer is one of the most commonly occurring malignancies. It has been reported that mammalian target of rapamycin (mTOR) is phosphorylated in lung cancer and its activation was more frequent in tumors with overexpression of phosphatidylinositol 3-kinase (PI3K)/Akt. Therefore, dual inhibitors of PI3K/Akt and mTOR signaling could be valuable agents for treating lung cancer. In the present study, we show that fisetin, a dietary tetrahydroxyflavone inhibits cell growth with the concomitant suppression of PI3K/Akt and mTOR signaling in human nonsmall cell lung cancer (NSCLC) cells. Using autodock 4, we found that fisetin physically interacts with the mTOR complex at two sites. Fisetin treatment was also found to reduce the formation of A549 cell colonies in a dose-dependent manner. Treatment of cells with fisetin caused decrease in the protein expression of PI3K (p85 and p110), inhibition of phosphorylation of Akt, mTOR, p70S6K1, eIF-4E and 4E-BP1. Fisetin-treated cells also exhibited dose-dependent inhibition of the constituents of mTOR signaling complex such as Rictor, Raptor, GβL and PRAS40. There was an increase in the phosphorylation of AMPKα and a decrease in the phosphorylation of TSC2 on treatment of cells with fisetin. We also found that treatment of cells with mTOR inhibitor rapamycin and mTOR-siRNA caused decrease in phosphorylation of mTOR and its target proteins which were further downregulated on treatment with fisetin, suggesting that these effects are mediated in part, through mTOR signaling. Our results show that fisetin suppressed PI3K/Akt and mTOR signaling in NSCLC cells and thus, could be developed as a chemotherapeutic agent against human lung cancer. Copyright © 2011 UICC.

Bhatia N.,University of Wisconsin - Madison | Xiao T.Z.,University of Wisconsin - Madison | Rosenthal K.A.,University of Wisconsin - Madison | Siddiqui I.A.,University of Wisconsin - Madison | And 9 more authors.
Journal of Investigative Dermatology | Year: 2013

Melanoma-associated antigen-encoding (MAGE) genes are expressed in melanoma and other cancers but not in normal somatic cells. MAGE expression is associated with aggressive tumor growth, poor clinical outcome, and resistance to chemotherapy, but the mechanisms have not been completely elucidated. In this study, we show that downregulation of MAGE-C2 in A375 melanoma cells and low-passage cultures from human metastatic melanomas (MRA cells) results in increased apoptosis and decreased growth of tumor xenografts in athymic nude mice. Previously, we showed that MAGE-C2 binds KAP1, a scaffolding protein that regulates DNA repair. Phosphorylation of KAP1-Serine 824 (Ser824) by ataxia-telangiectasia-mutated (ATM) kinase is necessary for repair of DNA double-strand breaks (DSBs); now we show that MAGE-C2 knockdown reduces, whereas MAGE-C2 overexpression increases, ATM kinase-dependent phosphorylation of KAP1-Ser824. We demonstrate that MAGE-C2 increases co-precipitation of KAP1 with ATM and that binding of MAGE-C2 to KAP1 is necessary for increased KAP1-Ser824 phosphorylation. Furthermore, ectopic expression of MAGE-C2 enhances repair of I-SceI endonuclease-induced DSBs in U-2OS cells. As phosphorylation of KAP1-Ser824 facilitates relaxation of heterochromatin, which is necessary for DNA repair and cellular proliferation, our results suggest that MAGE-C2 can promote tumor growth by phosphorylation of KAP1-Ser824 and by enhancement of DNA damage repair. © 2013 The Society for Investigative Dermatology.

Smith D.W.,McArdle Laboratory for Cancer Research | Sugden B.,McArdle Laboratory for Cancer Research
Viruses | Year: 2012

Epstein-Barr Nuclear Antigen 1 (EBNA1) is a multifunctional protein encoded by EBV. EBNA1's role in maintaining EBV in latently proliferating cells, by mediating EBV genome synthesis and nonrandom partitioning to daughter cells, as well as regulating viral gene transcription, is well characterized. Less understood are the roles of EBNA1 in affecting the host cell to provide selective advantages to those cells that harbor EBV. In this review we will focus on the interactions between EBNA1 and the host cell that may provide EBV-infected cells selective advantages beyond the maintenance of EBV. © 2013 by the authors; licensee MDPI, Basel, Switzerland.

Leng N.,University of Wisconsin - Madison | Dawson J.A.,University of Wisconsin - Madison | Thomson J.A.,Morgridge Institute for Research | Ruotti V.,Morgridge Institute for Research | And 6 more authors.
Bioinformatics | Year: 2013

Motivation: Messenger RNA expression is important in normal development and differentiation, as well as in manifestation of disease. RNA-seq experiments allow for the identification of differentially expressed (DE) genes and their corresponding isoforms on a genome-wide scale. However, statistical methods are required to ensure that accurate identifications are made. A number of methods exist for identifying DE genes, but far fewer are available for identifying DE isoforms. When isoform DE is of interest, investigators often apply gene-level (count-based) methods directly to estimates of isoform counts. Doing so is not recommended. In short, estimating isoform expression is relatively straightforward for some groups of isoforms, but more challenging for others. This results in estimation uncertainty that varies across isoform groups. Count-based methods were not designed to accommodate this varying uncertainty, and consequently, application of them for isoform inference results in reduced power for some classes of isoforms and increased false discoveries for others.Results: Taking advantage of the merits of empirical Bayesian methods, we have developed EBSeq for identifying DE isoforms in an RNA-seq experiment comparing two or more biological conditions. Results demonstrate substantially improved power and performance of EBSeq for identifying DE isoforms. EBSeq also proves to be a robust approach for identifying DE genes. © 2013 The Author.

Goodman C.A.,University of Wisconsin - Madison | McNally R.M.,University of Wisconsin - Madison | Hoffmann F.M.,McArdle Laboratory for Cancer Research | Hoffmann F.M.,University of Wisconsin - Madison | Hornberger T.A.,University of Wisconsin - Madison
Molecular Endocrinology | Year: 2013

Myostatin, a member of the TGF superfamily, is sufficient to induce skeletal muscle atrophy. Myostatin-induced atrophy is associated with increases in E3-ligase atrogin-1 expression and protein degradation and decreases in Akt/mechanistic target of rapamycin (mTOR) signaling and protein synthesis. Myostatin signaling activates the transcription factor Smad3 (Small Mothers Against Decapentaplegic), which has been shown to be necessary for myostatin-induced atrogin-1 expression and atrophy; however, it is not known whether Smad3 is sufficient to induce these events or whether Smad3 simply plays a permissive role. Thus, the aim of this study was to address these questions with an in vivo model. To accomplish this goal, in vivo transfection of plasmid DNA was used to create transient transgenic mouse skeletal muscles, and our results show for the first time that Smad3 expression is sufficient to stimulate atrogin-1 promoter activity, inhibit Akt/ mTOR signaling and protein synthesis, and induce muscle fiber atrophy. Moreover, we propose that Akt/mTOR signaling is inhibited by a Smad3-induced decrease in microRNA-29 (miR-29) expression and a subsequent increase in the translation of phosphatase and tensin homolog (PTEN) mRNA. Smad3 is also sufficient to inhibit peroxisome proliferator-activated receptorcoactivator-γ coactivator-1α (PGC1α) promoter activity and to increase FoxO (Forkhead Box Protein, Subclass O)-mediated signaling and the promoter activity of plasminogen activator inhibitor 1 (PAI-1). Combined, this study provides the first evidence that Smad3 is sufficient to regulate many of the events associated with myostatin-induced atrophy and therefore suggests that Smad3 signaling may be a viable target for therapies aimed at preventing myostatin-induced muscle atrophy. © 2013 by The Endocrine Society.

Loading McArdle Laboratory for Cancer Research collaborators
Loading McArdle Laboratory for Cancer Research collaborators