Time filter

Source Type


Agency: Cordis | Branch: H2020 | Program: IA | Phase: NMP-21-2014 | Award Amount: 9.18M | Year: 2015

Currently there is a lack of methodologies for the conservation of modern and contemporary artworks, many of which will not be accessible in very short time due to extremely fast degradation processes. The challenge of NANORESTART (NANOmaterials for the REStoration of works of ART) will be to address this issue within a new framework with respect to the state of the art of conservation science. NANORESTART is devoted to the development of nanomaterials to ensure long term protection and security of modern/contemporary cultural heritage, taking into account environmental and human risks, feasibility and materials costs. The market for conservation of this heritage is estimated at some 5 billion per year, and could increase by a significant factor in the next years due to the wider use of nanomaterials. The new tools and materials developed will represent a breakthrough in cultural heritage and conservation science and will focus on: (i) tools for controlled cleaning, such as highly-retentive gels for the confinement of enzymes and nanostructured fluids based on green surfactants; (ii) the strengthening and protection of surfaces by using nanocontainers, nanoparticles and supramolecular systems/assemblies; (iii) nanostructured substrates and sensors for enhanced molecules detection; (iv) evaluation of the environmental impact and the development of security measures for long lasting conservation of cultural heritage. Within the project the industrial scalability of the developed materials will be demonstrated. NANORESTART gathers centres of excellence in the field of synthesis and characterization of nanomaterials, world leading chemical Industries and SMEs operating in R&D, and International and European centres for conservation, education and museums. Such centres will assess the new materials on modern/contemporary artefacts in urgent need of conservation, and disseminate the knowledge and the new nanomaterials among conservators on a worldwide perspective.

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: SPIRE-01-2014 | Award Amount: 5.88M | Year: 2015

The Process Industries require a high degree of automation, monitoring, and advanced simulation and control for their often complex manufacturing processes and operations. Emphasis is on continuous or batch production, mixing, reaction and separation of materials of higher value. Indeed, increased globalisation and competition are drivers for process analytical technologies (PAT) that enable seamless process control, greater flexibility and cost efficiency. ProPAT aims to develop novel sensors and analysers for providing measurements on composition, particle size and local bulk properties, as well as more traditional but smart sensors for measuring other process parameters, such as temperature, flowrate, pressure, etc., and integrate them into a versatile global control platform for data acquisition, data processing & mining and User Interface in order to measure properties of process streams and products, accurately and in real-time. The platform also provides self-learning and predictive capabilities aimed for dramatically reducing overcosts derived from even slight deviations from the optimum process. Low cost MEMS-NIR spectroscopic and granulometric analysers, smart sensors for in batch and in continuous processes will be developed and integrated into the global control platform with the chemometric tools and the predictive software to deliver an integrated process control platform. ProPAT will enable near real time closed-loop process control to operate industrial processes at their optimum, both economically and environmentally, while ensuring high levels of quality. It will also allow the uptake of the Quality by Design for continuous process improvement. The project results will be validated in different processes and applications including milling of minerals, ceramics, metals, mixing and granulation of pharma products and polymerization of resins, and will represent a major step forward towards more efficient, reliable and sustainable industrial operation.

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: NMP-23-2015 | Award Amount: 7.15M | Year: 2016

The demand for lower dependency on critical raw materials (CRM) such as rare earths (RE) is not only a European but a global problem that demands immediate action. The purpose of this project is to exploit advanced theoretical and computation methods together with state-of-the-art materials preparation and characterization techniques, to develop the next generation RE-free/lean permanent magnets (PM). The material design will be driven by automated large computational screening of new and novel intermetallic compounds with uniaxial structure in order to achieve high saturation magnetisation, magnetocrystalline anisotropy and Curie temperature. The simulations will be based on a primary screening detecting the mechanisms that give rise to distorted phases and stabilize them, by adding doping atoms as stabilizers. In a further computation on successfully synthetized compounds, micromagnetic calculations will be used in order to design the optimal microstructure for the given phases that will maximise the coercivity needed for a PM. Extensive experimental processing and characterisation of the selected phases will result in a first proof of principle of the feasibility of NOVAMAG PMs. A multidisciplinary team of magnet experts consisting of chemists, material scientists, physicists and engineers from academia, national labs and industry is assembled to undertake a concerted, systematic and innovative study to overcome the problems involved and develop the next generation RE-free/lean PMs. Currently the demand for these PM s is even higher with the emerging markets of hybrid/electric vehicles and wind mill power systems. The proposed project will provide the fundamental innovations and breakthroughs which will have a major impact in re-establishing the Europe as a leader in the science, technology and commercialization of this very important class of materials and help decrease our dependence on China, which will in turn improve the competitiveness of EU manufacturers.

Nanotechnology is a key enabling technology. Still existing uncertainties concerning EHS need to be addressed to explore the full potential of this new technology. One challenge consists in the development of methods that reliably identify, characterize and quantify nanomaterials (NM) both as substance and in various products and matrices. The European Commission has recently recommended a definition of NM as reference to determine whether an unknown material can be considered as nanomaterial (2011/696/EU). The proposed NanoDefine project will explicitly address this question. A consortium of European top RTD performers, metrology institutes and nanomaterials and instrument manufacturers has been established to mobilize the critical mass of expertise required to support the implementation of the definition. Based on a comprehensive evaluation of existing methodologies and a rigorous intra-lab and inter-lab comparison, validated measurement methods and instruments will be developed that are robust, readily implementable, cost-effective and capable to reliably measure the size of particles in the range of 1100 nm, with different shapes, coatings and for the widest possible range of materials, in various complex media and products. Case studies will assess their applicability for various sectors, including food/feed, cosmetics etc. One major outcome of the project will be the establishment of an integrated tiered approach including validated rapid screening methods (tier 1) and validated in depth methods (tier 2), with a user manual to guide end-users, such as manufacturers, regulatory bodies and contract laboratories, to implement the developed methodology. NanoDefine will be strongly linked to main standardization bodies, such as CEN, ISO and OECD, by actively participating in TCs and WGs, and by proposing specific ISO/CEN work items, to integrate the developed and validated methodology into the current standardization work.

Agency: Cordis | Branch: H2020 | Program: IA | Phase: NMP-02-2015 | Award Amount: 6.98M | Year: 2015

Nanocomposites are promising for many sectors, as they can make polymers stronger, less water and gas permeable, tune surface properties, add functionalities such as antimicrobial effects. In spite of intensive research activities, significant efforts are still needed to deploy the full potential of nanotechnology in the industry. The main challenge is still obtaining a proper nanostructuring of the nanoparticles, especially when transferring it to industrial scale, further improvements are clearly needed in terms of processing and control. The OptiNanoPro project will develop different approaches for the introduction of nanotechnology into packaging, automotive and photovoltaic materials production lines. In particular, the project will focus on the development and industrial integration of tailored online dispersion and monitoring systems to ensure a constant quality of delivered materials. In terms of improved functionalities, nanotechnology can provide packaging with improved barrier properties as well as repellent properties resulting in easy-to-empty features that will on the one hand reduce wastes at consumer level and, on the other hand, improve their acceptability by recyclers. Likewise, solar panels can be self-cleaning to increase their effectiveness and extend the period between their maintenance and their lifetime by filtering UV light leading to material weathering. In the automotive sector, lightweight parts can be obtained for greater fuel efficiency. To this end, a group of end-user industries from Europe covering the supply and value chain of the 3 target sectors and using a range of converting processes such as coating and lamination, compounding, injection/co-injection and electrospray nanodeposition, supported by selected RTDs and number of technological SMEs, will work together on integrating new nanotechnologies in existing production lines, while also taking into account nanosafety, environmental, productivity and cost-effectiveness issues.

Discover hidden collaborations