Mbeya Medical Research Center

Mbeya, Tanzania

Mbeya Medical Research Center

Mbeya, Tanzania
SEARCH FILTERS
Time filter
Source Type

Dawson R.,University of Cape Town | Diacon A.H.,Stellenbosch University | Everitt D.,Stellenbosch University | Van Niekerk C.,Global Alliance for TB Drug Development | And 18 more authors.
The Lancet | Year: 2015

Background New antituberculosis regimens are urgently needed to shorten tuberculosis treatment. Following on from favourable assessment in a 2 week study, we investigated a novel regimen for efficacy and safety in drug-susceptible and multidrug-resistant (MDR) tuberculosis during the first 8 weeks of treatment. Methods We did this phase 2b study of bactericidal activity - defined as the decrease in colony forming units (CFUs) of Mycobacterium tuberculosis in the sputum of patients with microscopy smear-positive pulmonary tuberculosis - at eight sites in South Africa and Tanzania. We enrolled treatment-naive patients with drug-susceptible, pulmonary tuberculosis, who were randomly assigned by computer-generated sequences to receive either 8 weeks of moxifloxacin, 100 mg pretomanid (formerly known as PA-824), and pyrazinamide (MPa100Z regimen); moxifloxacin, 200 mg pretomanid, and pyrazinamide (MPa200Z regimen); or the current standard care for drug-susceptible pulmonary tuberculosis, isoniazid, rifampicin, PZA, and ethambutol (HRZE regimen). A group of patients with MDR tuberculosis received MPa200Z (DRMPa200Z group). The primary outcome was bactericidal activity measured by the mean daily rate of reduction in M tuberculosis CFUs per mL overnight sputum collected once a week, with joint Bayesian non-linear mixed-effects regression modelling. We also assessed safety and tolerability by monitoring adverse events. This study is registered with ClinicalTrials.gov, number NCT01498419. Findings Between March 24, 2012, and July 26, 2013 we enrolled 207 patients and randomly assigned them to treatment groups; we assigned 60 patients to the MPa100Z regimen, 62 to the MPa200Z regimen, and 59 to the HRZE regimen. We non-randomly assigned 26 patients with drug-resistant tuberculosis to the DRMPa200Z regimen. In patients with drug-susceptible tuberculosis, the bactericidal activity of MPa200Z (n=54) on days 0-56 (0·155, 95% Bayesian credibility interval 0·133-0·178) was significantly greater than for HRZE (n=54, 0·112, 0·093-0·131). DRMPa200Z (n=9) had bactericidal activity of 0·117 (0·070-0·174). The bactericidal activity on days 7-14 was strongly associated with bactericidal activity on days 7-56. Frequencies of adverse events were similar to standard treatment in all groups. The most common adverse event was hyperuricaemia in 59 (29%) patients (17 [28%] patients in MPa100Z group, 17 [27%] patients in MPa200Z group, 17 [29%] patients. in HRZE group, and 8 [31%] patients in DRMPa200Z group). Other common adverse events were nausea in (14 [23%] patients in MPa100Z group, 8 [13%] patients in MPa200Z group, 7 [12%] patients in HRZE group, and 8 [31%] patients in DRMPa200Z group) and vomiting (7 [12%] patients in MPa100Z group, 7 [11%] patients in MPa200Z group, 7 [12%] patients in HRZE group, and 4 [15%] patients in DRMPa200Z group). No on-treatment electrocardiogram occurrences of corrected QT interval more than 500 ms (an indicator of potential of ventricular tachyarrhythmia) were reported. No phenotypic resistance developed to any of the drugs in the regimen. Interpretation The combination of moxifloxacin, pretomanid, and pyrazinamide, was safe, well tolerated, and showed superior bactericidal activity in drug-susceptible tuberculosis during 8 weeks of treatment. Results were consistent between drug-susceptible and MDR tuberculosis. This new regimen is ready to enter phase 3 trials in patients with drug-susceptible tuberculosis and MDR-tuberculosis, with the goal of shortening and simplifying treatment. Funding Global Alliance for TB Drug Development. © 2015 Elsevier Ltd.


PubMed | University of Arkansas for Medical Sciences, University of the Free State, Global Alliance for TB Drug Development, University of Witwatersrand and 7 more.
Type: Clinical Trial, Phase II | Journal: Lancet (London, England) | Year: 2015

New antituberculosis regimens are urgently needed to shorten tuberculosis treatment. Following on from favourable assessment in a 2 week study, we investigated a novel regimen for efficacy and safety in drug-susceptible and multidrug-resistant (MDR) tuberculosis during the first 8 weeks of treatment.We did this phase 2b study of bactericidal activity--defined as the decrease in colony forming units (CFUs) of Mycobacterium tuberculosis in the sputum of patients with microscopy smear-positive pulmonary tuberculosis-at eight sites in South Africa and Tanzania. We enrolled treatment-naive patients with drug-susceptible, pulmonary tuberculosis, who were randomly assigned by computer-generated sequences to receive either 8 weeks of moxifloxacin, 100 mg pretomanid (formerly known as PA-824), and pyrazinamide (MPa100Z regimen); moxifloxacin, 200 mg pretomanid, and pyrazinamide (MPa200Z regimen); or the current standard care for drug-susceptible pulmonary tuberculosis, isoniazid, rifampicin, PZA, and ethambutol (HRZE regimen). A group of patients with MDR tuberculosis received MPa200Z (DRMPa200Z group). The primary outcome was bactericidal activity measured by the mean daily rate of reduction in M tuberculosis CFUs per mL overnight sputum collected once a week, with joint Bayesian non-linear mixed-effects regression modelling. We also assessed safety and tolerability by monitoring adverse events. This study is registered with ClinicalTrials.gov, number NCT01498419.Between March 24, 2012, and July 26, 2013 we enrolled 207 patients and randomly assigned them to treatment groups; we assigned 60 patients to the MPa100Z regimen, 62 to the MPa200Z regimen, and 59 to the HRZE regimen. We non-randomly assigned 26 patients with drug-resistant tuberculosis to the DRMPa200Z regimen. In patients with drug-susceptible tuberculosis, the bactericidal activity of MPa200Z (n=54) on days 0-56 (0155, 95% Bayesian credibility interval 0133-0178) was significantly greater than for HRZE (n=54, 0112, 0093-0131). DRMPa200Z (n=9) had bactericidal activity of 0117 (0070-0174). The bactericidal activity on days 7-14 was strongly associated with bactericidal activity on days 7-56. Frequencies of adverse events were similar to standard treatment in all groups. The most common adverse event was hyperuricaemia in 59 (29%) patients (17 [28%] patients in MPa100Z group, 17 [27%] patients in MPa200Z group, 17 [29%] patients. in HRZE group, and 8 [31%] patients in DRMPa200Z group). Other common adverse events were nausea in (14 [23%] patients in MPa100Z group, 8 [13%] patients in MPa200Z group, 7 [12%] patients in HRZE group, and 8 [31%] patients in DRMPa200Z group) and vomiting (7 [12%] patients in MPa100Z group, 7 [11%] patients in MPa200Z group, 7 [12%] patients in HRZE group, and 4 [15%] patients in DRMPa200Z group). No on-treatment electrocardiogram occurrences of corrected QT interval more than 500 ms (an indicator of potential of ventricular tachyarrhythmia) were reported. No phenotypic resistance developed to any of the drugs in the regimen.The combination of moxifloxacin, pretomanid, and pyrazinamide, was safe, well tolerated, and showed superior bactericidal activity in drug-susceptible tuberculosis during 8 weeks of treatment. Results were consistent between drug-susceptible and MDR tuberculosis. This new regimen is ready to enter phase 3 trials in patients with drug-susceptible tuberculosis and MDR-tuberculosis, with the goal of shortening and simplifying treatment.Global Alliance for TB Drug Development.


PubMed | Karolinska Institutet, Center for Prevention Research in South Africa, University of Witwatersrand, University of the Sierra and 37 more.
Type: Journal Article | Journal: Nature reviews. Drug discovery | Year: 2015

The treatment of tuberculosis is based on combinations of drugs that directly target Mycobacterium tuberculosis. A new global initiative is now focusing on a complementary approach of developing adjunct host-directed therapies.


Portevin D.,Swiss Tropical and Public Health Institute | Portevin D.,University of Basel | Moukambi F.,Mbeya Medical Research Center | Moukambi F.,Ludwig Maximilians University of Munich | And 28 more authors.
The Lancet Infectious Diseases | Year: 2014

Background: The diagnosis of paediatric tuberculosis is complicated by non-specific symptoms, difficult specimen collection, and the paucibacillary nature of the disease. We assessed the accuracy of a novel immunodiagnostic T-cell activation marker-tuberculosis (TAM-TB) assay in a proof-of-concept study to identify children with active tuberculosis. Methods: Children with symptoms that suggested tuberculosis were prospectively recruited at the NIMR-Mbeya Medical Research Center in Mbeya, and the Ifakara Health Institute in Bagamoyo, Tanzania, between May 10, 2011, and Sept 4, 2012. Sputum and peripheral blood mononuclear cells were obtained for Mycobacterium tuberculosis culture and performance assessment of the TAM-TB assay. The children were assigned to standardised clinical case classifications based on microbiological and clinical findings. Findings: Among 290 children screened, we selected a subgroup of 130 to ensure testing of at least 20 with culture-confirmed tuberculosis. 17 of 130 children were excluded because of inconclusive TAM-TB assay results. The TAM-TB assay enabled detection of 15 of 18 culture-confirmed cases (sensitivity 83·3%, 95% CI 58·6-96·4). Specificity was 96·8% (95% CI 89·0-99·6) in the cases that were classified as not tuberculosis (n=63), with little effect from latent tuberculosis infection. The TAM-TB assay identified five additional patients with highly probable or probable tuberculosis, in whom M tuberculosis was not isolated. The median time to diagnosis was 19·5 days (IQR 14-45) for culture. Interpretation: The sputum-independent TAM-TB assay is a rapid and accurate blood test that has the potential to improve the diagnosis of active tuberculosis in children. Funding: European and Developing Countries Clinical Trials Partnership, German Federal Ministry of Education and Research, and Swiss National Science Foundation. © 2014 Elsevier Ltd.


PubMed | U.S. Army, Ludwig Maximilians University of Munich, 3 Mbeya Medical Research Center and Korean International Vaccine Institute
Type: | Journal: AIDS research and human retroviruses | Year: 2016

In preparation for vaccine trials, HIV-1 genetic diversity was surveyed between 2002 and 2006 through the Cohort Development study in the form of a retrospective and prospective observational study in and around the town of Mbeya in Tanzanias Southwest Highlands. This study describes the molecular epidemiology of HIV-1 strains obtained from 97 out of 106 incident HIV-1 infections identified in three subpopulations of participants (one rural, two urban) from the Mbeya area. Near full-genome or half-genome sequencing showed a subtype distribution of 40% C, 17% A1, 1% D, and 42% inter-subtype recombinants. Compared to viral subtyping results previously obtained from the retrospective phase of this study, the overall proportion of incident viral strains did not change greatly during the study course, suggesting maturity of the epidemic. A comparison to a current Phase I-II vaccine being tested in Africa shows 17% amino acid sequence difference between the gp120 of the vaccine and subtype C incident strains. Phylogenetic and recombinant breakpoint analysis of the incident strains revealed the emergence of CRF41_CD and many unique recombinants, as well as the presence of six local transmission networks most of which were confined to the rural subpopulation. In the context of vaccine cohort selection, these results suggest distinct infection transmission dynamics within these three geographically close subpopulations. The diversity and genetic sequences of the HIV-1 strains obtained during this study will greatly contribute to the planning, immunogen selection, and analysis of vaccine-induced immune responses observed during HIV-1 vaccine trials in Tanzania and neighboring countries.


Bowness R.,University of St. Andrews | Boeree M.J.,Radboud University Nijmegen | Aarnoutse R.,Radboud University Nijmegen | Dawson R.,University of Cape Town | And 13 more authors.
Journal of Antimicrobial Chemotherapy | Year: 2015

Objectives: The relationship between cfu and Mycobacterial Growth Indicator Tube (MGIT) time to positivity (TTP) is uncertain. We attempted to understand this relationship and create a mathematical model to relate these two methods of determining mycobacterial load. Methods: Sequential bacteriological load data from clinical trials determined by MGIT and cfu were collected and mathematical models derived. All model fittings were conducted in the R statistical software environment (version 3.0.2), using the lm and nls functions. Results: TTP showed a negative correlation with log10 cfu on all 14 days of the study. There was an increasing gradient of the regression line and y-intercept as treatment progressed. There was also a trend towards an increasing gradient with higher doses of rifampicin. Conclusions: These data suggest that there is a population of mycobacterial cells that are more numerous when detected in liquid than on solid medium. Increasing doses of rifampicin differentially kill this group of organisms. These findings support the idea that increased doses of rifampicin are more effective. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved.


PubMed | University of KwaZulu - Natal, National Institute for Communicable Diseases, Ludwig Maximilians University of Munich, Mbeya Medical Research Center and University of Cape Town
Type: Journal Article | Journal: The Journal of infectious diseases | Year: 2015

To investigate whether distinct populations have differing human immunodeficiency virus type 1 (HIV) neutralizing antibody responses, we compared 20 women from Tanzanias HIV Superinfection Study (HISIS) cohort, who were infected multiple HIV subtypes, and 22 women from the Centre for the AIDS Programme of Research in South Africa (CAPRISA) cohort, who were infected exclusively with HIV subtype C. By 2 years after infection, 35% of HISIS subjects developed neutralization breadth, compared with 9% of CAPRISA subjects (P = .0131). Cumulative viral loads between 3 and 12 months were higher in the HISIS group (P = .046) and strongly associated with breadth (P < .0001). While viral load was the strongest predictor, other factors may play a role, as the odds of developing breadth remained higher in HISIS even after correction for viral load.


PubMed | University of Cape Town, Ludwig Maximilians University of Munich, Radboud University Nijmegen, Mbeya Medical Research Center and 2 more.
Type: Journal Article | Journal: The Journal of antimicrobial chemotherapy | Year: 2015

The relationship between cfu and Mycobacterial Growth Indicator Tube (MGIT) time to positivity (TTP) is uncertain. We attempted to understand this relationship and create a mathematical model to relate these two methods of determining mycobacterial load.Sequential bacteriological load data from clinical trials determined by MGIT and cfu were collected and mathematical models derived. All model fittings were conducted in the R statistical software environment (version 3.0.2), using the lm and nls functions.TTP showed a negative correlation with log10 cfu on all 14 days of the study. There was an increasing gradient of the regression line and y-intercept as treatment progressed. There was also a trend towards an increasing gradient with higher doses of rifampicin.These data suggest that there is a population of mycobacterial cells that are more numerous when detected in liquid than on solid medium. Increasing doses of rifampicin differentially kill this group of organisms. These findings support the idea that increased doses of rifampicin are more effective.

Loading Mbeya Medical Research Center collaborators
Loading Mbeya Medical Research Center collaborators