Time filter

Source Type

Freedman B.S.,Harvard University | Lam A.Q.,Harvard University | Lam A.Q.,Harvard Stem Cell Institute | Sundsbak J.L.,Mayo Translational Polycystic Kidney Disease Center | And 11 more authors.
Journal of the American Society of Nephrology | Year: 2013

Heterozygous mutations in PKD1 or PKD2, which encode polycystin-1 (PC1) and polycystin-2(PC2), respectively, cause autosomal dominant PKD (ADPKD), whereas mutations in PKHD1, which encodes fibrocystin/polyductin (FPC), cause autosomal recessive PKD (ARPKD). However, the relationship between these proteins and the pathogenesis of PKD remains unclear. To model PKD in human cells, we established induced pluripotent stem (iPS) cell lines from fibroblasts of three ADPKD and two ARPKD patients. Genetic sequencing revealed unique heterozygous mutations in PKD1 of the parental ADPKD fibroblasts but no pathogenicmutations in PKD2. Undifferentiated PKD iPS cells, control iPS cells, and embryonic stem cells elaborated primary cilia and expressed PC1, PC2, and FPC at similar levels, and PKD and control iPS cells exhibited comparable rates of proliferation, apoptosis, and ciliogenesis. However, ADPKD iPS cells as well as somatic epithelial cells and hepatoblasts/biliary precursors differentiated fromthese cells expressed lower levels of PC2 at the cilium. Additional sequencing confirmed the retention of PKD1 heterozygous mutations in iPS cell lines from two patients but identified possible loss of heterozygosity in iPS cell lines from one patient. Furthermore, ectopic expression of wild-type PC1inADPKDiPS-derived hepatoblasts rescued ciliary PC2protein expression levels, and overexpression of PC1 but not a carboxy-terminal truncation mutant increased ciliary PC2 expression levels in mouse kidney cells. Taken together, these results suggest that PC1 regulates ciliary PC2 protein expression levels and support the use of PKD iPS cells for investigating disease pathophysiology. Copyright © 2013 by the American Society of Nephrology.

Li Y.,Mayo Translational Polycystic Kidney Disease Center | Zhang Q.,Mayo Translational Polycystic Kidney Disease Center | Wei Q.,Mayo Translational Polycystic Kidney Disease Center | Zhang Y.,Mayo Translational Polycystic Kidney Disease Center | And 2 more authors.
Journal of Cell Biology | Year: 2012

Primary cilia serve as cellular antenna for various sensory signaling pathways. However, how the sensory receptors are properly targeted to the ciliary surface remains poorly understood. Here, we show that UBC-9, the sole E2 small ubiquitin-like modifier (SUMO)-conjugating enzyme, physically interacts with and SUMOylates the C terminus of small GTPase ARL-13, the worm orthologue of ARL13B that mutated in ciliopathy Joubert syndrome. Mutations that totally abolish the SUMOylation of ARL-13 do not affect its established role in ciliogenesis, but fail to regulate the proper ciliary targeting of various sensory receptors and consequently compromise the corresponding sensory functions. Conversely, constitutively SUMOylated ARL-13 fully rescues all ciliary defects of arl-13-null animals. Furthermore, SUMOylation modification of human ARL13B is required for the ciliary entry of polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease. Our data reveal a novel but conserved role for the SUMOylation modification of ciliary small GTPase ARL13B in specifically regulating the proper ciliary targeting of various sensory receptors. © 2012 Li et al.

Discover hidden collaborations