Carlsbad, CA, United States
Carlsbad, CA, United States

MaxLinear is a New York Stock Exchange-traded company that provides highly integrated radio-frequency analog and mixed-signal semiconductor solutions for broadband communications applications.Founded in 2003, the company held an initial public offering on March 23, 2010.MaxLinear's products enable the reception of broadband data and video content in a wide range of electronic devices, including cable and terrestrial digital set-top boxes, DOCSIS 3.0 voice and data cable modems, digital televisions, personal computers, netbooks and in-vehicle entertainment devices.The company designs its analog and mixed-signal circuits in standard CMOS process technology for low-cost manufacturing. A "fabless" company, it uses outside chipmaking facilities, known as foundries or fabs, to manufacture its chips, and sells its products to original equipment manufacturers , module makers and original design manufacturers .MaxLinear is based in Carlsbad, California, with research and development centers in Irvine, Calif., China and India. It employs nearly 300 people, most of whom have engineering degrees.Since its founding, it has sold more than 200 million chips. Wikipedia.


Time filter

Source Type

A method and system comprises in a data center including a first server rack housing a first spatial crossbar, a second server rack housing a second spatial crossbar, performing by the first spatial crossbar: transmitting data to the second spatial crossbar via a first millimeter wave beam between the first spatial crossbar and the second spatial crossbar. The first millimeter wave beam may emanate from the first spatial crossbar at a first angle and be redirected toward the second spatial crossbar by a reflective surface in the data center. The first server rack may house a first server; and the data may be received from the first server via a wired or fiber link. The first server rack may house a top-of-rack switch, and the data may be received from the top-of-rack switch via a wired or fiber link.


A network device comprising: a first connector for connecting to an external network from which data may be communicated using a first frequency band in accordance with a first communications protocol; a second connector for connecting to an on-premises network; and circuitry residing in a signal path between said first connector and said second connector. The circuitry may be operable to: permit a first portion of the first frequency band to pass from the first connector to the second connector; block a second portion of said first frequency band from passing from the first connector to the second connector; and communicate, via the second connector, signals that are normally communicated in frequency ranges not including the first frequency band, into the on-premises network using the first frequency band. The signals may include packets formatted in accordance with Multimedia over Coax Alliance (MoCA) standards.


Methods and systems for multi-path video and network channels may comprise a communication device comprising a wideband tuner (WB) and a narrowband tuner (NB). A video channel and a network channel may be received in the WB when the device is operating in a first stage. A video channel and a network channel may be received in the WB and the network channel may also be received in the NB when the device is operating in a second stage. The network channel may be received in the NB when the device is operating in a third stage. The reception of the network channel from both the WB and NB may enable a continuous reception of the network channel in a transition between the first and third stages. The WB may be operable to receive a plurality of channels and the NB may be operable to receive a single channel.


A communication system includes a conversion module configured to convert a signal between a radio frequency baseband (RF-BB) and an intermediate frequency (IF). At least one RF front-end module converts the signal between the IF and a radio frequency (RF). The RF front-end module is configured as an RF phased array and includes a coaxial interconnect configured to connect the conversion module with the RF front-end module. The signal is transmitted between the conversion module and the RF-front end module via the coaxial interconnect. At least one RF front-end module includes an active front-end (AFE) configured to allow the signal to be transmitted via the coaxial interconnect while minimizing any deterioration of the signal.


Aspects of a method and apparatus for communicating electronic service guide information in a satellite television system are provided. A satellite communication system may receive a signal via an interface to a satellite dish, and receive data from a network via a second interface (e.g., an interface to a LAN or a WAN, such as the Internet). The satellite communication system may be operable to channelize the received satellite signal into a plurality of channels, wherein a first channel of the plurality of channels carries electronic service guide (ESG) data. The satellite communication system may select which of the plurality of channels to input to a demodulator based, at least in part, on whether ESG data is available via the second interface. A second channel carrying media data may be input to the demodulator while the ESG data is available via the second interface.


A method and apparatus for memory power and/or area reduction. An array of memory cells may be scanned to detect faulty memory cells, if any, in the array. A supply voltage V_(mem )applied to the array of memory cells may be controlled based on a result of the scan, and based on a sensitivity coefficient of one, or more, of the array of memory cells. The sensitivity coefficient may indicate an impact that the one, or more, of the array of memory cells being faulty may have on the performance of a device that reads and writes data to the memory array. Additionally or alternatively, the physical dimensions of the memory cells may be determined based on the sensitivity coefficient(s) and/or based on a number of faulty memory cells that can be tolerated in the array of memory cells.


Methods and systems for time interleaved analog-to-digital converter timing mismatch calibration and compensation may include receiving an analog signal on a chip, converting the analog signal to a digital signal utilizing a time interleaved analog-to-digital-converter (ADC), and reducing a blocker signal that is generated by timing offsets in the time interleaved ADC by estimating complex coupling coefficients between a desired digital output signal and the blocker signal utilizing a decorrelation algorithm on frequencies within a desired frequency bandwidth. The decorrelation algorithm may comprise a symmetric adaptive decorrelation algorithm. The received analog signal may be generated by a calibration tone generator on the chip. An aliased signal may be summed with an output signal from a multiplier. The complex coupling coefficients may be determined utilizing the decorrelation algorithm on the summed signals. A multiplier may be configured to cancel the blocker signal utilizing the determined complex coupling coefficients.


A cable modem termination system (CMTS) may determine, for a plurality of cable modems served by the CMTS, a corresponding plurality of SNR-related metrics. The CMTS may assigning the modems among a plurality of service groups based on the SNR-related metrics. For any one of the modems, the CMTS may configure physical layer communication parameters to be used by the one of the modems based on a SNR-related metric of a service group to which the one of the modems is assigned. The physical layer communication parameters may include one or more of: transmit power, receive sensitivity, timeslot duration, modulation type, modulation order, forward error correction (FEC) type, and FEC code rate. The CMTS and the modems may communicate using orthogonal frequency division multiplexing (OFDM) over a plurality of subcarriers, and the physical layer communication parameters may be determined on a per-subcarrier basis.


Patent
MaxLinear | Date: 2017-02-28

Methods and systems for reliable bootstrapping switches may comprise sampling a received signal with a bootstrapping switch, where the bootstrapping switch comprises a switching metal-oxide semiconductor (MOS) transistor having a pull-down path coupled to a gate terminal of the switching MOS transistor, wherein: source terminals of both a diode-connected transistor and a second MOS transistor are coupled to the gate terminal of the switching MOS transistor; drain terminals of both the diode-connected transistor and the second MOS transistor are coupled to a source terminal of a third MOS transistor, the third MOS transistor coupled in series with a fourth MOS transistor; and a drain terminal of the fourth MOS transistor is coupled to ground. The third and fourth MOS transistors may be in series with the second MOS transistor. A gate terminal of the fourth transistor may be switched from ground to a supply voltage to activate the pull-down path.


Patent
MaxLinear | Date: 2017-02-28

A cable modem termination system (CMTS) may communicate with a plurality of cable modems using a plurality of orthogonal frequency division multiplexed (OFDM) subcarriers. The CMTS may determine a performance metric of each of the cable modems. For each of the OFDM subcarriers and each of the cable modems, the CMTS may select physical layer parameters to be used for communication with that cable modem on that OFDM subcarrier based on a performance metric of that cable modem. The parameters may be selected for each individual modem and/or each individual subcarrier, or may be selected for groups of modems and/or groups of subcarriers. The parameters may include, for example, one or more of: transmit power, receive sensitivity, timeslot duration, modulation type, modulation order, forward error correction (FEC) type, and FEC code rate.

Loading MaxLinear collaborators
Loading MaxLinear collaborators