Carlsbad, CA, United States
Carlsbad, CA, United States

MaxLinear is a New York Stock Exchange-traded company that provides highly integrated radio-frequency analog and mixed-signal semiconductor solutions for broadband communications applications.Founded in 2003, the company held an initial public offering on March 23, 2010.MaxLinear's products enable the reception of broadband data and video content in a wide range of electronic devices, including cable and terrestrial digital set-top boxes, DOCSIS 3.0 voice and data cable modems, digital televisions, personal computers, netbooks and in-vehicle entertainment devices.The company designs its analog and mixed-signal circuits in standard CMOS process technology for low-cost manufacturing. A "fabless" company, it uses outside chipmaking facilities, known as foundries or fabs, to manufacture its chips, and sells its products to original equipment manufacturers , module makers and original design manufacturers .MaxLinear is based in Carlsbad, California, with research and development centers in Irvine, Calif., China and India. It employs nearly 300 people, most of whom have engineering degrees.Since its founding, it has sold more than 200 million chips. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

A network device comprising: a first connector for connecting to an external network from which data may be communicated using a first frequency band in accordance with a first communications protocol; a second connector for connecting to an on-premises network; and circuitry residing in a signal path between said first connector and said second connector. The circuitry may be operable to: permit a first portion of the first frequency band to pass from the first connector to the second connector; block a second portion of said first frequency band from passing from the first connector to the second connector; and communicate, via the second connector, signals that are normally communicated in frequency ranges not including the first frequency band, into the on-premises network using the first frequency band. The signals may include packets formatted in accordance with Multimedia over Coax Alliance (MoCA) standards.


Methods and systems for multi-path video and network channels may comprise a communication device comprising a wideband tuner (WB) and a narrowband tuner (NB). A video channel and a network channel may be received in the WB when the device is operating in a first stage. A video channel and a network channel may be received in the WB and the network channel may also be received in the NB when the device is operating in a second stage. The network channel may be received in the NB when the device is operating in a third stage. The reception of the network channel from both the WB and NB may enable a continuous reception of the network channel in a transition between the first and third stages. The WB may be operable to receive a plurality of channels and the NB may be operable to receive a single channel.


A stacked synthesizer for wide local oscillator (LO) generation using a dynamic divider. The phase locked loop can include a plurality of voltage controlled oscillators (VCOs), and a selector that can be configured to select an output of one of the plurality of VCOs. The selected output of one of the plurality of VCOs can be provided to an on-chip dynamic divider and to an off-chip dynamic divider for LO sharing. The dynamic dividers can be configured to generate synthesizer outputs based on a multiplication of the selected output of one of the plurality of VCOs by a factor (1+1/M), where M is a variable number.


Patent
MaxLinear | Date: 2017-01-17

A coupling device for use in a hybrid fiber coaxial (HFC) network may be configured to detect a control message and determine from the message a period for which a cable modem downstream is to be transmitting a desired transmission, disable an upstream path through it when there is only noise incident on the upstream path, and enable the upstream path during the period when a desired transmission from a cable modem downstream of the coupling device is incident on the upstream path. The coupling device may be a trunk amplifier, a distribution amplifier, or a splitter. The coupling device may comprise a single upstream interface coupled to a plurality of downstream interfaces. The enabling and/or disabling may be in response to a signal strength indicated by the SSI being below a threshold.


A method and system comprises in a data center including a first server rack housing a first spatial crossbar, a second server rack housing a second spatial crossbar, performing by the first spatial crossbar: transmitting data to the second spatial crossbar via a first millimeter wave beam between the first spatial crossbar and the second spatial crossbar. The first millimeter wave beam may emanate from the first spatial crossbar at a first angle and be redirected toward the second spatial crossbar by a reflective surface in the data center. The first server rack may house a first server; and the data may be received from the first server via a wired or fiber link. The first server rack may house a top-of-rack switch, and the data may be received from the top-of-rack switch via a wired or fiber link.


Methods and systems for time interleaved analog-to-digital converter timing mismatch calibration and compensation may include receiving an analog signal on a chip, converting the analog signal to a digital signal utilizing a time interleaved analog-to-digital-converter (ADC), and reducing a blocker signal that is generated by timing offsets in the time interleaved ADC by estimating complex coupling coefficients between a desired digital output signal and the blocker signal utilizing a decorrelation algorithm on frequencies within a desired frequency bandwidth. The decorrelation algorithm may comprise a symmetric adaptive decorrelation algorithm. The received analog signal may be generated by a calibration tone generator on the chip. An aliased signal may be summed with an output signal from a multiplier. The complex coupling coefficients may be determined utilizing the decorrelation algorithm on the summed signals. A multiplier may be configured to cancel the blocker signal utilizing the determined complex coupling coefficients.


A cable modem termination system (CMTS) may determine, for a plurality of cable modems served by the CMTS, a corresponding plurality of SNR-related metrics. The CMTS may assigning the modems among a plurality of service groups based on the SNR-related metrics. For any one of the modems, the CMTS may configure physical layer communication parameters to be used by the one of the modems based on a SNR-related metric of a service group to which the one of the modems is assigned. The physical layer communication parameters may include one or more of: transmit power, receive sensitivity, timeslot duration, modulation type, modulation order, forward error correction (FEC) type, and FEC code rate. The CMTS and the modems may communicate using orthogonal frequency division multiplexing (OFDM) over a plurality of subcarriers, and the physical layer communication parameters may be determined on a per-subcarrier basis.


A method and apparatus for memory power and/or area reduction. An array of memory cells may be scanned to detect faulty memory cells, if any, in the array. A supply voltage V_(mem )applied to the array of memory cells may be controlled based on a result of the scan, and based on a sensitivity coefficient of one, or more, of the array of memory cells. The sensitivity coefficient may indicate an impact that the one, or more, of the array of memory cells being faulty may have on the performance of a device that reads and writes data to the memory array. Additionally or alternatively, the physical dimensions of the memory cells may be determined based on the sensitivity coefficient(s) and/or based on a number of faulty memory cells that can be tolerated in the array of memory cells.


Patent
MaxLinear | Date: 2017-01-06

One or more circuits may comprise at least one first-type analog-to-digital converter (ADC) and at least one second-type ADC. The circuit(s) may be operable to receive a plurality of signals, each of which may comprise a plurality of channels. The circuit(s) may be operable to digitize a selected one or more of the channels. Which, if any, of the selected channels are digitized via the at least one first-type ADC and which, if any, of the selected channels are digitized via the at least one second-type ADC, may be based on which of the plurality of channels are the selected channels and/or based on power consumption of the circuit(s). A bandwidth of each first-type ADC may be on the order of the bandwidth of one of the received signals. A bandwidth of each second-type ADC may be on the order of the bandwidth of one of the plurality of channels.


Patent
MaxLinear | Date: 2017-01-09

A first microwave backhaul transceiver may comprise a plurality of antenna elements. The transceiver may determine atmospheric conditions between it and one or more potential link partners, and adjust a radiation pattern of the plurality of antenna elements based on the determined atmospheric conditions. A first radiation pattern of the plurality of antenna elements may correspond to a first microwave backhaul link between the first microwave transceiver and a second microwave backhaul transceiver. A second radiation pattern of the plurality of antenna elements may correspond to a second microwave backhaul link between the first microwave transceiver and a third microwave backhaul transceiver. The transceiver may adjust the radiation pattern based on characteristics of data to be transmitted, and based on a routing table it maintains.

Loading MaxLinear collaborators
Loading MaxLinear collaborators