Entity

Time filter

Source Type


Anders H.-J.,Ludwig Maximilians University of Munich | Andersen K.,Ludwig Maximilians University of Munich | Stecher B.,Max Von Pettenkofer Institute
Kidney International | Year: 2013

Chronic kidney disease (CKD) and end-stage renal disease (ESRD) are associated with systemic inflammation and acquired immunodeficiency, which promote cardiovascular disease, body wasting, and infections as leading causes of death. This phenomenon persists despite dialysis-related triggers of immune deregulation having been largely eliminated. Here we propose a potential immunoregulatory role of the intestinal microbiota in CKD/ESRD. We discuss how the metabolic alterations of uremia favor pathogen overgrowth (dysbiosis) in the gut and an increased translocation of living bacteria and bacterial components. This process has the potential to activate innate immunity and systemic inflammation. Persistent innate immune activation involves the induction of immunoregulatory mediators that suppress innate and adaptive immunity, similar to the concept of 'endotoxin tolerance' or 'immune paralysis' in advanced sepsis or chronic infections. Renal science has largely neglected the gut as a source of triggers for CKD/ESRD-related immune derangements and complications and lags behind on the evolving microbiota research. Interdisciplinary research activities at all levels are needed to unravel the pathogenic role of the intestinal microbiota in kidney disease and to evaluate if therapeutic interventions that manipulate the microbiota, such as pre-or probiotics, have a therapeutic potential to correct CKD/ESRD-related immune deregulation and to prevent the associated complications. © 2013 International Society of Nephrology. Source


Kaiser P.,ETH Zurich | Diard M.,ETH Zurich | Stecher B.,Max Von Pettenkofer Institute | Hardt W.-D.,ETH Zurich
Immunological Reviews | Year: 2012

The mammalian intestine is colonized by a dense microbial community, the microbiota. Homeostatic and symbiotic interactions facilitate the peaceful co-existence between the microbiota and the host, and inhibit colonization by most incoming pathogens ('colonization resistance'). However, if pathogenic intruders overcome colonization resistance, a fierce, innate inflammatory defense can be mounted within hours, the adaptive arm of the immune system is initiated, and the pathogen is fought back. The molecular nature of the homeostatic interactions, the pathogen's ability to overcome colonization resistance, and the triggering of native and adaptive mucosal immune responses are still poorly understood. To study these mechanisms, the streptomycin mouse model for Salmonella diarrhea is of great value. Here, we review how S. Typhimurium triggers mucosal immune responses by active (virulence factor elicited) and passive (MyD88-dependent) mechanisms and introduce the S. Typhimurium mutants available for focusing on either response. Interestingly, mucosal defense turns out to be a double-edged sword, limiting pathogen burdens in the gut tissue but enhancing pathogen growth in the gut lumen. This model allows not only studying the molecular pathogenesis of Salmonella diarrhea but also is ideally suited for analyzing innate defenses, microbe handling by mucosal phagocytes, adaptive secretory immunoglobulin A responses, probing microbiota function, and homeostatic microbiota-host interactions. Finally, we discuss the general need for defined assay conditions when using animal models for enteric infections and the central importance of littermate controls. © 2011 John Wiley & Sons A/S. Source


Stecher B.,Max Von Pettenkofer Institute | Stecher B.,German Center for Infection Research
Cell Host and Microbe | Year: 2013

Antibiotic therapy predisposes the host to infections with human enteropathogens. In a recent study, Ng et al. (2013) demonstrate that antibiotic-mediated disruption of the microbial food web gives rise to free microbiota-liberated monosaccharides in the gut, which can promote growth of enteropathogenic bacteria. © 2013 Elsevier Inc. Source


Stecher B.,Max Von Pettenkofer Institute | Hardt W.-D.,ETH Zurich
Current Opinion in Microbiology | Year: 2011

The intestinal microbiota can protect efficiently against colonization by many enteric pathogens ('colonization resistance', CR). This phenomenon has been known for decades, but the mechanistic basis of CR is incompletely defined. At least three mechanisms seem to contribute, that is direct inhibition of pathogen growth by microbiota-derived substances, nutrient depletion by microbiota growth and microbiota-induced stimulation of innate and adaptive immune responses. In spite of CR, intestinal infections are well known to occur. In these cases, the multi-faceted interactions between the microbiota, the host and the pathogen are shifted in favor of the pathogen. We are discussing recent progress in deciphering the underlying molecular mechanisms in health and disease. © 2010 Elsevier Ltd. Source


Gurtler L.G.,Max Von Pettenkofer Institute
Intervirology | Year: 2014

Coinfections with hepatitis B virus (HBV) and HIV are very frequent. Although HBV is a DNA virus, it replicates via reverse transcription like HIV. Structural similarities between the enzymatic pocket of the HBV DNA polymerase and HIV-1 reverse transcriptase are the basis that certain drugs inhibit both enzymes and thus the replication of both viruses. HBV components increase the pathogenic action of HIV and vice versa directly by certain proteins like HBsAg in the case of HBV and HIV-encoded Tat and Vpr and by disturbing the cytokine balance in affected cells. Antiretroviral therapy is highly beneficial for HIV/HBV-coinfected patients, but carries the risk of drug-induced resistance development and hepatotoxicity. Even with restoration of the immune capacity, signs of hepatic inflammation may develop even after 10 years of treatment. © 2014 S. Karger AG, Basel. Source

Discover hidden collaborations