Potsdam-Golm, Germany

The Max Planck Institute of Molecular Plant Physiology is a German research institute for molecular plant physiology, based in the Golm district of Potsdam, Brandenburg. Founded on January 1, 1994, the MPIMP focuses on the study of the dynamics of plant metabolism and how that relates to the entire plant system. The institution is one of the 80 institutes in the Max Planck Society . Wikipedia.


Time filter

Source Type

Sweetlove L.J.,University of Oxford | Fernie A.R.,Max Planck Institute of Molecular Plant Physiology
Annual Review of Plant Biology | Year: 2013

Identifying the correct subcellular locations for all enzymes and metabolites in plant metabolic networks is a major challenge, but is critically important for the success of the new generation of large-scale metabolic models that are driving a network-level appreciation of metabolic behavior. Even though the subcellular compartmentation of many central metabolic processes is thought to be well understood, recent gene-by-gene studies have revealed several unexpected enzyme localizations. Metabolite transport between subcellular compartments is crucial because it fundamentally affects the metabolic network structure. Although new metabolite transporters are being steadily identified, modeling work suggests that we have barely scratched the surface of the catalog of intracellular metabolite transporter proteins. In addition to compartmentation among organelles, it is increasingly apparent that microcompartment formation via the interactions of enzyme groups with intracellular membranes, the cytoskeleton, or other proteins is an important regulatory mechanism. In particular, this mechanism can promote metabolite channeling within the metabolic microcompartment, which can help control reaction specificity as well as dictate flux routes through the network. This has clear relevance for both synthetic biology in general and the engineering of plant metabolic networks in particular. © Copyright ©2013 by Annual Reviews. All rights reserved.


Tohge T.,Max Planck Institute of Molecular Plant Physiology
Nature protocols | Year: 2010

Given the ever-increasing number of species for which full-genome sequencing has been realized, there is a rising burden for gene functional annotation. In this study, we provide a detailed protocol that combines co-response gene analysis (using target genes of known function to allow the identification of nonannotated genes likely to be involved in a certain metabolic process) with the identification of target compounds through metabolomics. Strategies exist for applying this information to populations generated by both forward and reverse genetics approaches, although none of these are facile. This approach can also be used as a tool to identify unknown mass-spectral peaks representing new or unusual secondary metabolites, which is currently the major challenge of this analytical research field.


Lohse M.,Max Planck Institute of Molecular Plant Physiology
Nucleic acids research | Year: 2013

Mitochondria and plastids (chloroplasts) are cell organelles of endosymbiotic origin that possess their own genetic information. Most organellar DNAs map as circular double-stranded genomes. Across the eukaryotic kingdom, organellar genomes display great size variation, ranging from ∼15 to 20 kb (the size of the mitochondrial genome in most animals) to >10 Mb (the size of the mitochondrial genome in some lineages of flowering plants). We have developed OrganellarGenomeDraw (OGDRAW), a suite of software tools that enable users to create high-quality visual representations of both circular and linear annotated genome sequences provided as GenBank files or accession numbers. Although all types of DNA sequences are accepted as input, the software has been specifically optimized to properly depict features of organellar genomes. A recent extension facilitates the plotting of quantitative gene expression data, such as transcript or protein abundance data, directly onto the genome map. OGDRAW has already become widely used and is available as a free web tool (http://ogdraw.mpimp-golm.mpg.de/). The core processing components can be downloaded as a Perl module, thus also allowing for convenient integration into custom processing pipelines.


Schulze W.X.,Max Planck Institute of Molecular Plant Physiology | Usadel B.,Max Planck Institute of Molecular Plant Physiology
Annual Review of Plant Biology | Year: 2010

Mass-spectrometry-based proteomics, the large-scale analysis of proteins by mass spectrometry, has emerged as a new technology over the last decade and become routine in many plant biology laboratories. While early work consisted merely of listing proteins identified in a given organ or under different conditions of interest, there is a growing need to apply comparative and quantitative proteomics strategies toward gaining novel insights into functional aspects of plant proteins and their dynamics. However, during the transition from qualitative to quantitative protein analysis, the potential and challenges will be tightly coupled. Several strategies for differential proteomics that involve stable isotopes or label-free comparisons and their statistical assessment are possible, each having specific strengths and limitations. Furthermore, incomplete proteome coverage and restricted dynamic range still impose the strongest limitations to data throughput and precise quantitative analysis. This review gives an overview of the current state of the art in differential proteomics and possible strategies in data processing. Copyright © 2010 by Annual Reviews. All rights reserved.


Licausi F.,Max Planck Institute of Molecular Plant Physiology
New Phytologist | Year: 2011

The oxygen availability to plant tissues can vary strongly in time and space. To endure short- or long-term oxygen deprivation, plants evolved a series of metabolic and morphological adaptations that have been extensively studied. However, our knowledge of the molecular regulation of these processes is not as well understood. In this review, the recent findings on the molecular effectors that regulate the response of higher plants to oxygen deficiency are discussed. Although no direct oxygen sensor has been discovered in plants so far, mechanisms that perceive low-oxygen derived signals have been reported, involving different sets of transcription factors (TFs). The ERF (Ethylene Responsive Factor) family especially appears to play a crucial role in the determination of survival to reduced oxygen availability in Arabidopsis and rice. This class of TFs displays a broad range of targets, being involved in both the metabolic reprogramming and the morphological adaptations exploited by plants when subjected to low-oxygen conditions. © 2010 The Author. New Phytologist © 2010 New Phytologist Trust.


Stitt M.,Max Planck Institute of Molecular Plant Physiology
Current Opinion in Plant Biology | Year: 2013

System integration of metabolism is considered in analogy to the investigation of corporate misdemeanour. Motive, or goal-oriented explanation, provides hypotheses that can guide the investigation of network structure. Opportunity can be established by correlative analysis using large-scale omics resources. However, correlative approaches on their own remain inconclusive and seldom identify all the links in a network. Establishment of means, or the ability to act on other network components and contribute to a phenotype, is therefore crucial. This requires functional information. Integration of quantitative data in the context of pathway models provides a powerful approach to establish 'means'. This is illustrated by discussing: first, how protein abundance is regulated by a network including transcript abundance, translation and protein degradation and second, how a combination of experimentation and modelling provides information about pathway flux, an emergent network property that integrates changes in proteins and metabolites and determines composition and biomass. © 2013.


Stitt M.,Max Planck Institute of Molecular Plant Physiology
Current Opinion in Biotechnology | Year: 2013

The maximum yield of crop plants depends on the efficiency of conversion of sunlight into biomass. This review summarises recent models that estimate energy conversion efficiency for successive steps in photosynthesis and metabolism. Photorespiration was identified as a major reason for energy loss during photosynthesis and strategies to modify or suppress photorespiration are presented. Energy loss during the conversion of photosynthate to biomass is also large but cannot be modelled as precisely due to incomplete knowledge about pathways and turnover and maintenance costs. Recent research on pathways involved in metabolite transport and interconversion in different organs, and recent insights into energy requirements linked to the production, maintenance and turnover of the apparatus for cellular growth and repair processes are discussed. © 2012 Elsevier Ltd.


Bock R.,Max Planck Institute of Molecular Plant Physiology
Current Opinion in Biotechnology | Year: 2014

The plastid genome represents an attractive target of genetic engineering in crop plants. Plastid transgenes often give high expression levels, can be stacked in operons and are largely excluded from pollen transmission. Recent research has greatly expanded our toolbox for plastid genome engineering and many new proof-of-principle applications have highlighted the enormous potential of the transplastomic technology in both crop improvement and the development of plants as bioreactors for the sustainable and cost-effective production of biopharmaceuticals, enzymes and raw materials for the chemical industry. This review describes recent technological advances with plastid transformation in seed plants. It focuses on novel tools for plastid genome engineering and transgene expression and summarizes progress with harnessing the potential of plastid transformation in biotechnology. © 2013 Elsevier Ltd.


Bock R.,Max Planck Institute of Molecular Plant Physiology
Annual Review of Plant Biology | Year: 2015

The small bacterial-type genome of the plastid (chloroplast) can be engineered by genetic transformation, generating cells and plants with transgenic plastid genomes, also referred to as transplastomic plants. The transformation process relies on homologous recombination, thereby facilitating the site-specific alteration of endogenous plastid genes as well as the precisely targeted insertion of foreign genes into the plastid DNA. The technology has been used extensively to analyze chloroplast gene functions and study plastid gene expression at all levels in vivo. Over the years, a large toolbox has been assembled that is now nearly comparable to the techniques available for plant nuclear transformation and that has enabled new applications of transplastomic technology in basic and applied research. This review describes the state of the art in engineering the plastid genomes of algae and land plants (Embryophyta). It provides an overview of the existing tools for plastid genome engineering, discusses current technological limitations, and highlights selected applications that demonstrate the immense potential of chloroplast transformation in several key areas of plant biotechnology. ©2015 by Annual Reviews. All rights reserved.


Bock R.,Max Planck Institute of Molecular Plant Physiology
Trends in Plant Science | Year: 2010

Horizontal gene transfer (HGT) is increasingly being recognized as a significant force in the evolution of eukaryotic genomes. Plants have been both donors and recipients of horizontally mobilized genes and their genetic barter partners include prokaryotes and eukaryotes from all kingdoms. By expanding the gene pool beyond species boundaries, HGT events can drive genomic and phenotypic changes that increase fitness substantially. Accumulating evidence suggests that HGT is particularly prevalent between organisms that are either intimately associated or establish at least occasionally cell-cell contacts (e.g. in mutualistic or parasitic relationships). Here, I summarize current knowledge about HGT in plants, discuss possible molecular mechanisms and adaptive values of HGT events and highlight recent progress made in reconstructing HGT processes in laboratory experiments. © 2009 Elsevier Ltd. All rights reserved.

Loading Max Planck Institute of Molecular Plant Physiology collaborators
Loading Max Planck Institute of Molecular Plant Physiology collaborators