Time filter

Source Type

Egerer J.,Charite - Medical University of Berlin | Egerer J.,Max Planck Institute fuer Molekulare Genetik | Emmerich D.,Charite - Medical University of Berlin | Emmerich D.,Max Planck Institute fuer Molekulare Genetik | And 13 more authors.
Journal of Investigative Dermatology | Year: 2015

Gerodermia osteodysplastica is a hereditary segmental progeroid disorder affecting skin, connective tissues, and bone that is caused by loss-of-function mutations in GORAB. The golgin, RAB6-interacting (GORAB) protein localizes to the Golgi apparatus and interacts with the small GTPase RAB6. In this study, we used different approaches to shed more light on the recruitment of GORAB to this compartment. We show that GORAB best colocalizes with trans-Golgi markers and is rapidly displaced upon Brefeldin A exposition, indicating a loose association with Golgi membranes. A yeast two-hybrid screening revealed a specific interaction with the small GTPase ADP-ribosylation factor (ARF5) in its active, GTP-bound form. ARF5 and RAB6 bind to GORAB via the same internal Golgi-targeting RAB6 and ARF5 binding (IGRAB) domain. Two GORAB missense mutations identified in gerodermia osteodysplastica patients fall within this IGRAB domain. GORAB carrying the mutation p.Ala220Pro had a cytoplasmic distribution and failed to interact with both RAB6 and ARF5. In contrast, the p.Ser175Phe mutation displaced GORAB from the Golgi compartment to vesicular structures and selectively impaired ARF5 binding. Our findings indicate that the IGRAB domain is crucial for the Golgi localization of GORAB and that loss of this localization impairs its physiological function.

Fischer B.,Charite - Medical University of Berlin | Dimopoulou A.,Charite - Medical University of Berlin | Egerer J.,Charite - Medical University of Berlin | Egerer J.,Max Planck Institute fuer Molekulare Genetik | And 24 more authors.
Human Genetics | Year: 2012

Autosomal recessive cutis laxa (ARCL) syndromes are phenotypically overlapping, but genetically heterogeneous disorders. Mutations in the ATP6V0A2 gene were found to underlie both, autosomal recessive cutis laxa type 2 (ARCL2), Debré type, and wrinkly skin syndrome (WSS). The ATP6V0A2 gene encodes the a2 subunit of the V-type H+-ATPase, playing a role in proton translocation, and possibly also in membrane fusion. Here, we describe a highly variable phenotype in 13 patients with ARCL2, including the oldest affected individual described so far, who showed strikingly progressive dysmorphic features and heterotopic calcifications. In these individuals we identified 17 ATP6V0A2 mutations, 14 of which are novel. Furthermore, we demonstrate a localization of ATP6V0A2 at the Golgi-apparatus and a loss of the mutated ATP6V0A2 protein in patients' dermal fibroblasts. Investigation of brefeldin A-induced Golgi collapse in dermal fibroblasts as well as in HeLa cells deficient for ATP6V0A2 revealed a delay, which was absent in cells deficient for the ARCL-associated proteins GORAB or PYCR1. Furthermore, fibroblasts from patients with ATP6V0A2 mutations displayed elevated TGF-β signalling and increased TGF-β1 levels in the supernatant. Our current findings expand the genetic and phenotypic spectrum and suggest that, besides the known glycosylation defect, alterations in trafficking and signalling processes are potential key events in the pathogenesis of ATP6V0A2-related ARCL. © 2012 Springer-Verlag.

Fischer B.,Charite - Medical University of Berlin | Fischer B.,Max Planck Institute fuer Molekulare Genetik | Callewaert B.,Ghent University | Schroter P.,Charite - Medical University of Berlin | And 12 more authors.
Molecular Genetics and Metabolism | Year: 2014

Autosomal recessive cutis laxa (ARCL) type 2 constitutes a heterogeneous group of diseases mainly characterized by lax and wrinkled skin, skeletal anomalies, and a variable degree of intellectual disability. ALDH18A1-related ARCL is the most severe form within this disease spectrum. Here we report on the clinical and molecular findings of two affected individuals from two unrelated families. The patients presented with typical features of de Barsy syndrome and an overall progeroid appearance. However, the phenotype was highly variable including cardiovascular involvement in the more severe case. Investigation of a skin biopsy of one patient revealed not only the typical alterations of elastic fibers, but also an altered structure of mitochondria in cutaneous fibroblasts. Using conventional sequencing and copy number analysis we identified a frameshift deletion of one nucleotide and a microdeletion affecting the ALDH18A1 gene, respectively, in a homozygous state in both patients. Expression analysis in dermal fibroblasts from the patient carrying the microdeletion showed an almost complete absence of the ALDH18A1 mRNA resulting in an absence of the ALDH18A1 protein. So far, only 13 affected individuals from seven unrelated families suffering from ALDH18A1-related cutis laxa have been described in literature. Our findings provide new insights into the clinical spectrum and show that beside point mutations microdeletions are a possible cause of ALDH18A1-ARCL. © 2014 Elsevier Inc.

Dimopoulou A.,Charite - Medical University of Berlin | Fischer B.,Charite - Medical University of Berlin | Fischer B.,Max Planck Institute fuer Molekulare Genetik | Gardeitchik T.,Radboud University Nijmegen | And 32 more authors.
Molecular Genetics and Metabolism | Year: 2013

Autosomal recessive cutis laxa type 2B (ARCL2B; OMIM # 612940) is a segmental progeroid disorder caused by mutations in PYCR1 encoding pyrroline-5-carboxylate reductase 1, which is part of the conserved proline de novo synthesis pathway. Here we describe 33 patients with PYCR1-related ARCL from 27 families with initial diagnoses varying between wrinkly skin syndrome, gerodermia osteodysplastica, De Barsy syndrome or more severe progeria syndromes. Given the difficult differential diagnosis of ARCL syndromes we performed a systematic comparison of clinical features of PYCR1-related ARCL. Intrauterine growth retardation, a characteristic triangular facial gestalt, psychomotor retardation, and hypotonia were the most relevant distinctive hallmarks of ARCL due to proline de novo synthesis defects. Corneal clouding or cataracts, athetoid movements, and finger contractures were rather rare features, but had a high predictive value. In our cohort we identified 20 different PYCR1 mutations of which seven were novel. Most of the mutations accumulated in exons 4 to 6. Missense alterations of highly conserved residues were most frequent followed by splice site changes and a single nonsense mutation. Analysis of genotype-phenotype correlation revealed that patients with mutations in the first two exons had lower average clinical scores and absent or only mild intellectual disability. Structural analyses predicted interference with PYCR1 multimerization for a subset of missense mutations. These findings have implications for the clinics as well as the pathomechanism of PYCR1-related ARCL. © 2013 Elsevier Inc.

Discover hidden collaborations