Entity

Time filter

Source Type


Wellman-Labadie O.,University of British Columbia | Lemaire S.,University of Ottawa | Mann K.,Max Planck Institute fuer Biochemie | Picman J.,University of Ottawa | Hincke M.T.,University of Ottawa
Journal of Agricultural and Food Chemistry | Year: 2010

The avian eggshell cuticle is the waxy outermost layer of the mineralized eggshell in direct contact with the environment. In this study, lipophilic eggshell surface extracts from three domestic species were evaluated for their antimicrobial activity. Chicken and goose extracts demonstrated potent bactericidal activity against both Gram-positive and Gram-negative bacteria, while activity could not be detected for duck eggshell surface extracts. Using the chicken as a model species, evaluation of albumen, fecal material, and uropygial gland extracts eliminated these as a potential source of the observed activity. Results suggest that lipophilic components are incorporated into the egg during its formation and play a role in antimicrobial defense. This study represents the first successful extraction and evaluation of lipophilic antimicrobial components from the avian egg. © 2010 American Chemical Society. Source


Tochowicz A.,Max Planck Institute fuer Biochemie | Tochowicz A.,Genentech | Goettig P.,Max Planck Institute fuer Biochemie | Goettig P.,University of Salzburg | And 14 more authors.
Journal of Biological Chemistry | Year: 2011

Homodimerization is an essential step for membrane type 1 matrix metalloproteinase (MT1-MMP) to activate proMMP-2 and to degrade collagen on the cell surface. To uncover the molecular basis of the hemopexin (Hpx) domain-driven dimerization of MT1-MMP, a crystal structure of the Hpx domain was solved at 1.7 Å resolution. Two interactions were identified as potential biological dimer interfaces in the crystal structure, and mutagenesis studies revealed that the biological dimer possesses a symmetrical interaction where blades II and III of molecule A interact with blades III and II of molecule B. The mutations of amino acids involved in the interaction weakened the dimer interaction of Hpx domains in solution, and incorporation of these mutations into the full-length enzyme significantly inhibited dimer-dependent functions on the cell surface, including proMMP-2 activation, collagen degradation, and invasion into the three-dimensional collagen matrix, whereas dimer-independent functions, including gelatin film degradation and two-dimensional cell migration, were not affected. These results shed light on the structural basis of MT1-MMP dimerization that is crucial to promote cellular invasion. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc. Source

Discover hidden collaborations