Koln, Germany

The Max Planck Institute for Plant Breeding Research was originally founded in Müncheberg, Germany in 1928 as part of the Kaiser-Wilhelm-Gesellschaft. The founding Director, Erwin Baur, initiated breeding programmes with fruits and berries, as well as basic research on Antirrhinum majus and the domestication of lupins. After the Second World War, the Institute moved west to Voldagsen, and was relocated to new buildings on the present site in Cologne in 1955. The modern era of the Institute began in 1978 with the appointment of Jeff Schell and the development of plant transformation technologies and plant molecular genetics. The focus on molecular genetics was extended in 1980 with the appointment of Heinz Saedler. The appointment in 1983 of Klaus Hahlbrock broadened the expertise of the Institute in the area of plant biochemistry, and the arrival of Francesco Salamini in 1985 added a focus on crop genetics. During the period 1978-1990, the Institute was greatly expanded and new buildings were constructed for the departments led by Schell, Hahlbrock and Salamini, in addition to a new lecture hall and the Max Delbrück Laboratory building that housed independent research groups over a period of 10 years.A new generation of Directors was appointed from 2000 with the approaching retirements of Klaus Hahlbrock and Jeff Schell. Paul Schulze-Lefert and George Coupland were appointed in 2000 and 2001, respectively, and Maarten Koornneef arrived three years later upon the retirement of Francesco Salamini. The new scientific departments brought a strong focus on utilising model species to understand the regulatory principles and molecular mechanisms underlying selected traits. The longer-term aim is to translate these discoveries to breeding programmes through the development of rational breeding concepts. The arrival of a new generation of Directors also required modernisation of the infrastructure. So far, this has involved complete refurbishment of the building that houses the Plant Developmental Biology laboratory , construction of a new guesthouse and library , planning of new buildings for the administration and technical workshops , as well as a new laboratory building completed in May 2012. The new laboratory building includes a section that links all three scientific departments, offices and the Bioinformatics Research Group.CurrentlyTemplate:When? the Institute hosts three scientific departments: Department of Plant Developmental Biology , Department of Plant Breeding and Genetics and Department of Plant Microbe Interactions . Wikipedia.


Time filter

Source Type

Kemen E.,Max Planck Institute for Plant Breeding Research
Current Opinion in Plant Biology | Year: 2014

Microbial organisms sharing habitats aim for maximum fitness that they can only reach by collaboration. Developing stable networks within communities are crucial and can be achieved by exchanging common goods and genes that benefit the community. Only recently was it shown that horizontal gene transfer is not only common between prokaryotes but also into eukaryotic organisms such as fungi and oomycetes benefiting communal stability. Eukaryotic plant symbionts and pathogens coevolve with the plant microbiome and can acquire the ability to communicate or even collaborate, facilitating communal host colonization. Understanding communal infection will lead to a mechanistic understanding in how new hosts can be colonized under natural conditions and how we can counteract. © 2014.


Garcia A.V.,Max Planck Institute for Plant Breeding Research
PLoS pathogens | Year: 2010

An important layer of plant innate immunity to host-adapted pathogens is conferred by intracellular nucleotide-binding/oligomerization domain-leucine rich repeat (NB-LRR) receptors recognizing specific microbial effectors. Signaling from activated receptors of the TIR (Toll/Interleukin-1 Receptor)-NB-LRR class converges on the nucleo-cytoplasmic immune regulator EDS1 (Enhanced Disease Susceptibility1). In this report we show that a receptor-stimulated increase in accumulation of nuclear EDS1 precedes or coincides with the EDS1-dependent induction and repression of defense-related genes. EDS1 is capable of nuclear transport receptor-mediated shuttling between the cytoplasm and nucleus. By enhancing EDS1 export from inside nuclei (through attachment of an additional nuclear export sequence (NES)) or conditionally releasing EDS1 to the nucleus (by fusion to a glucocorticoid receptor (GR)) in transgenic Arabidopsis we establish that the EDS1 nuclear pool is essential for resistance to biotrophic and hemi-biotrophic pathogens and for transcriptional reprogramming. Evidence points to post-transcriptional processes regulating receptor-triggered accumulation of EDS1 in nuclei. Changes in nuclear EDS1 levels become equilibrated with the cytoplasmic EDS1 pool and cytoplasmic EDS1 is needed for complete resistance and restriction of host cell death at infection sites. We propose that coordinated nuclear and cytoplasmic activities of EDS1 enable the plant to mount an appropriately balanced immune response to pathogen attack.


Pecinka A.,Max Planck Institute for Plant Breeding Research
Trends in plant science | Year: 2013

Transcriptional gene silencing (TGS) is an epigenetic mechanism that suppresses the activity of repetitive DNA elements via accumulation of repressive chromatin marks. We discuss natural variation in TGS, with a particular focus on cases that affect the function of protein-coding genes and lead to developmental or physiological changes. Comparison of the examples described has revealed that most natural variation is associated with genetic determinants, such as gene rearrangements, inverted repeats, and transposon insertions that triggered TGS. Recent technical advances have enabled the study of epigenetic natural variation at a whole-genome scale and revealed patterns of inter- and intraspecific epigenetic variation. Future studies exploring non-model species may reveal species-specific evolutionary adaptations at the level of chromatin configuration. Copyright © 2013 Elsevier Ltd. All rights reserved.


Kombrink E.,Max Planck Institute for Plant Breeding Research
Planta | Year: 2012

Jasmonates are lipid-derived compounds that act as signals in plant stress responses and developmental processes. Enzymes participating in biosynthesis of jasmonic acid (JA) and components of JA signaling have been extensively characterized by biochemical and molecular-genetic tools. Mutants have helped to define the pathway for synthesis of jasmonoyl-l-isoleucine (JA-Ile), the bioactive form of JA, and to identify the F-box protein COI1 as central regulatory unit. Details on the molecular mechanism of JA signaling were recently unraveled by the discovery of JAZ proteins that together with the adaptor protein NINJA and the general co-repressor TOPLESS form a transcriptional repressor complex. The current model of JA perception and signaling implies the SCFCOI1 complex operating as E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ proteins for degradation by the 26S proteasome pathway, thereby allowing MYC2 and other transcription factors to activate gene expression. Chemical strategies, as integral part of jasmonate research, have helped the establishment of structure-activity relationships and the discovery of (+)-7-iso-JA-l-Ile as the major bioactive form of the hormone. The transient nature of its accumulation highlights the need to understand catabolism and inactivation of JA-Ile and recent studies indicate that oxidation of JA-Ile by cytochrome P450 monooxygenase is the major mechanism for turning JA signaling off. Plants contain numerous JA metabolites, which may have pronounced and differential bioactivity. A major challenge in the field of plant lipid signaling is to identify the cognate receptors and modes of action of these bioactive jasmonates/oxylipins. © 2012 Springer-Verlag.


Andres F.,Max Planck Institute for Plant Breeding Research | Coupland G.,Max Planck Institute for Plant Breeding Research
Nature Reviews Genetics | Year: 2012

Plants respond to the changing seasons to initiate developmental programmes precisely at particular times of year. Flowering is the best characterized of these seasonal responses, and in temperate climates it often occurs in spring. Genetic approaches in Arabidopsis thaliana have shown how the underlying responses to changes in day length (photoperiod) or winter temperature (vernalization) are conferred and how these converge to create a robust seasonal response. Recent advances in plant genome analysis have demonstrated the diversity in these regulatory systems in many plant species, including several crops and perennials, such as poplar trees. Here, we report progress in defining the diverse genetic mechanisms that enable plants to recognize winter, spring and autumn to initiate flower development. © 2012 Macmillan Publishers Limited. All rights reserved.


Schulze-Lefert P.,Max Planck Institute for Plant Breeding Research | Panstruga R.,Max Planck Institute for Plant Breeding Research
Trends in Plant Science | Year: 2011

Any given pathogenic microbial species typically colonizes a limited number of plant species. Plant species outside of this host range mount nonhost disease resistance to attempted colonization by the, in this case, non-adapted pathogen. The underlying mechanism of nonhost immunity and host immunity involves the same non-self detection systems, the combined action of nucleotide-binding and leucine-rich repeat (NB-LRR) proteins and pattern recognition receptors (PRRs). Here we hypothesize that the relative contribution of NB-LRR- and PRR-triggered immunity to nonhost resistance changes as a function of phylogenetic divergence time between host and nonhost. Similarly, changes in pathogen host range, e.g. host range expansions, appear to be driven by variation in pathogen effector repertoires, in turn leading to reproductive isolation and subsequent pathogen speciation. © 2011 Elsevier Ltd.


Saijo Y.,Max Planck Institute for Plant Breeding Research
Cellular Microbiology | Year: 2010

Like in animals, cell surface and intracellular receptors mediate immune recognition of potential microbial intruders in plants. Membrane-localized pattern recognition receptors (PRRs) initiate immune responses upon perception of cognate microbe-associated molecular patterns (MAMPs). MAMP-triggered immunity provides a first line of defence that restricts the invasion and propagation of both adapted and non-adapted pathogens. The Leu-rich repeat (LRR) receptor protein kinases (RKs) define a major class of trans-membrane receptors in plants, of which some members are engaged in MAMP recognition and/or defence signalling. The endoplasmic reticulum (ER) quality control (QC) systems monitor N-glycosylation and folding states of the extracellular, ligand-binding LRR domains of LRR-RKs. Recent progress reveals a critical role of evolutionarily conserved ERQC components for different layers of plant immunity. N-glycosylation appears to play a role in ERQC fidelity rather than in ligand binding of LRR-RKs. Moreover, even closely related PRRs show receptor-specific requirements for Nglycosylation. These findings are reminiscent of the earlier defined function of the cytosolic chaperon complex for LRR domain-containing intracellular immune receptors. QC of the LRR domains might provide a basis not only for the maintenance but also for diversification of recognition specificities for immune receptors in plants. © 2010 Blackwell Publishing Ltd.


Schneeberger K.,Max Planck Institute for Plant Breeding Research
Nature Reviews Genetics | Year: 2014

The long-lasting success of forward genetic screens relies on the simple molecular basis of the characterized phenotypes, which are typically caused by mutations in single genes. Mapping the location of causal mutations using genetic crosses has traditionally been a complex, multistep procedure, but next-generation sequencing now allows the rapid identification of causal mutations at single-nucleotide resolution even in complex genetic backgrounds. Recent advances of this mapping-by-sequencing approach include methods that are independent of reference genome sequences, genetic crosses and any kind of linkage information, which make forward genetics amenable for species that have not been considered for forward genetic screens so far. © 2014 Macmillan Publishers Limited.


Gebhardt C.,Max Planck Institute for Plant Breeding Research
Trends in Genetics | Year: 2013

Efficiency and precision in plant breeding can be enhanced by using diagnostic DNA-based markers for the selection of superior cultivars. This technique has been applied to many crops, including potatoes. The first generation of diagnostic DNA-based markers useful in potato breeding were enabled by several developments: genetic linkage maps based on DNA polymorphisms, linkage mapping of qualitative and quantitative agronomic traits, cloning and functional analysis of genes for pathogen resistance and genes controlling plant metabolism, and association genetics in collections of tetraploid varieties and advanced breeding clones. Although these have led to significant improvements in potato genetics, the prediction of most, if not all, natural variation in agronomic traits by diagnostic markers ultimately requires the identification of the causal genes and their allelic variants. This objective will be facilitated by new genomic tools, such as genomic resequencing and comparative profiling of the proteome, transcriptome, and metabolome in combination with phenotyping genetic materials relevant for variety development. © 2012 Elsevier Ltd.


Grant
Agency: GTR | Branch: BBSRC | Program: | Phase: Research Grant | Award Amount: 88.41K | Year: 2013

A key challenge in biology is to understand how different organisms come to have different forms. In plants this variation in form is obvious in the many different leaf shapes one sees during a walk in the park or when eating a salad. Leaves are also interesting to study because they play a key role in the food chain being the main photosynthetic organs of land plants and thus responsible for CO2 fixation in terrestrial ecosystems. For these reasons, understanding how diversity in leaf form is generated is of considerable interest to scientists. To study this problem we work with hairy bittercress (Cardamine hirsuta), which is a plant that has leaves fully subdivided into smaller leaflets. The presence of leaflets makes this plant very different from its close relative thale cress (Arabidopsis thaliana), which has entire, undivided leaves. We already know a lot about how an entire leaf shape is produced in thale cress because it is easy to grow and do experiments with. Hairy bittercress is also very easy to work with in the lab, so we use it to understand how leaflets are produced and what controls their formation. Here we want to understand processes that restrict leaflet growth during bitter cress development to result in the correct leaflet number and position that characterizes this plant. Our results will also help understand the developmental mechanisms that direct repeated processes, such as leaflet formation, to take place a limited number of times such that the precise form typical of any given species is attained.

Loading Max Planck Institute for Plant Breeding Research collaborators
Loading Max Planck Institute for Plant Breeding Research collaborators