Entity

Time filter

Source Type

Heidelberg, Germany

The Max Planck Institute for Medical Research in Heidelberg, Germany, is a facility of the Max Planck Society for basic medical research. Since its foundation, six Nobel Prize laureates worked at the Institute: Otto Fritz Meyerhof , Richard Kuhn , Walther Bothe , André Michel Lwoff , Rudolf Mößbauer and Bert Sakmann . The Institute has close ties with Heidelberg University. Wikipedia.


Dominguez R.,University of Pennsylvania | Holmes K.C.,Max Planck Institute for Medical Research
Annual Review of Biophysics | Year: 2011

Actin is the most abundant protein in most eukaryotic cells. It is highly conserved and participates in more protein-protein interactions than any known protein. These properties, along with its ability to transition between monomeric (G-actin) and filamentous (F-actin) states under the control of nucleotide hydrolysis, ions, and a large number of actin-binding proteins, make actin a critical player in many cellular functions, ranging from cell motility and the maintenance of cell shape and polarity to the regulation of transcription. Moreover, the interaction of filamentous actin with myosin forms the basis of muscle contraction. Owing to its central role in the cell, the actin cytoskeleton is also disrupted or taken over by numerous pathogens. Here we review structures of G-actin and F-actin and discuss some of the interactions that control the polymerization and disassembly of actin. © 2011 by Annual Reviews. All rights reserved. Source


Benjdia A.,Max Planck Institute for Medical Research
Current Opinion in Structural Biology | Year: 2012

Light is essential for many critical biological processes including vision, circadian rhythms, photosynthesis and DNA repair. DNA photolyases use light energy and a fully reduced flavin cofactor to repair the major UV-induced DNA damages, the cis-syn cyclobutane pyrimidine dimers (CPDs) and the pyrimidine-pyrimidone (6-4) photoproducts. Catalysis involves two photoreactions, the photoactivation which leads to the conversion of the flavin cofactor to its catalytic active form and the photorepair whose efficiency depends on a light-harvesting antenna chromophore. Very interestingly, an alternative and light-independent direct reversal mechanism to repair a distinct photolesion is found in bacterial spores, catalyzed by spore photoproduct lyase. This radical SAM enzyme uses an iron-sulfur cluster and S-adenosyl- l-methionine (SAM) to split a specific photoproduct, the so-called spore photoproduct (SP), back to two thymidine residues. The recently solved crystal structure of SP lyase provides new insights into this unique DNA repair mechanism and allows a detailed comparison with DNA photolyases. Similarities as well as divergences between DNA photolyases and SP lyase are highlighted in this review. © 2012 Elsevier Ltd. Source


Schlichting I.,Max Planck Institute for Medical Research
IUCrJ | Year: 2015

Protein crystallography using synchrotron radiation sources has had a tremendous impact on biology, having yielded the structures of thousands of proteins and given detailed insight into their mechanisms. However, the technique is limited by the requirement for macroscopic crystals, which can be difficult to obtain, as well as by the often severe radiation damage caused in diffraction experiments, in particular when using tiny crystals. To slow radiation damage, data collection is typically performed at cryogenic temperatures. With the advent of free-electron lasers (FELs) capable of delivering extremely intense femtosecond X-ray pulses, this situation appears to be remedied, allowing the structure determination of undamaged macromolecules using either macroscopic or microscopic crystals. The latter are exposed to the FEL beam in random orientations and their diffraction data are collected at cryogenic or room temperature in a serial fashion, since each crystal is destroyed upon a single exposure. The new approaches required for crystal growth and delivery, and for diffraction data analysis, including de novo phasing, are reviewed. The opportunities and challenges of SFX are described, including applications such as time-resolved measurements and the analysis of radiation damage-prone systems. Source


Cryle M.J.,Max Planck Institute for Medical Research
Biochemical Society Transactions | Year: 2010

The cytochromes P450 (P450s) are a superfamily of oxidative haemoproteins that are capable of catalysing a vast range of oxidative transformations, including the oxidation of unactivated alkanes, often with high stereo- and regio-selectivity. Fatty acid hydroxylation by P450s is widespread across both bacteria and higher organisms, with the sites of oxidation and specificity of oxidation varying from system to system. Several key examples are discussed in the present article, with the focus on P450BioI (CYP107H1), a biosynthetic P450 found in the biotin operon of Bacillus subtilis. The biosynthetic function of P450BioI is the formation of pimelic acid, a biotin precursor, via a multiple-step oxidative cleavage of long-chain fatty acids. P450BioI is a member of an important subgroup of P450s that accept their substrates not free in solution, but rather presented by a separate carrier protein. Structural characterization of the P450BioI-ACP (acyl-carrier protein) complex has recently been performed, which has revealed the basis for the oxidation of the centre of the fatty acid chain. The P450 BioI-ACP structure is the first such P450-carrier protein complex to be characterized structurally, with important implications for other biosynthetically intriguing P450-carrier protein complexes. ©The Authors. Source


Fischer M.G.,Max Planck Institute for Medical Research
Current Opinion in Microbiology | Year: 2016

Viruses with genomes up to a few megabases in length are a common occurrence in nature, even though they have escaped our notice until recently. These giant viruses infect mainly single-celled eukaryotes and isolation efforts concentrating on amoebal hosts alone have spawned hundreds of viral isolates, featuring viruses with previously unseen virion morphologies and the largest known viral genomes and particles. One of the challenges that lie ahead is to analyze and categorize the available data and to establish an approved classification system that reflects the evolutionary relationships and biological properties of these viruses. Extensive sampling of Acanthamoeba-infecting mimiviruses and initial characterization of their virophage parasites have provided a first blueprint of the genetic diversity and composition of a giant virus clade that will facilitate the taxonomic grouping of these fascinating microorganisms. © 2016 Elsevier Ltd. Source

Discover hidden collaborations