Entity

Time filter

Source Type

Gottingen, Germany

The Max Planck Institute of Experimental Medicine is located in Göttingen, Germany. It was founded as Kaiser Wilhelm Institute for Medical Research in 1947, and was renamed in 1965. It is one of 80 institutes in the Max Planck Society . Prof. Dr. Klaus-Armin Nave is currently the acting director of the institute. Wikipedia.


Burgalossi A.,Max Planck Institute for Experimental Medicine
Nature protocols | Year: 2012

Neurotransmitter release is triggered by membrane depolarization, Ca(2+) influx and Ca(2+) sensing by the release machinery, causing synaptic vesicle (SV) fusion with the plasma membrane. Interlinked is a complex membrane cycle in which vesicles are tethered to the release site, primed, fused and recycled. As many of these processes are Ca(2+) dependent and simultaneously occurring, it is difficult to dissect them experimentally. This problem can be partially circumvented by controlling synaptic Ca(2+) concentrations via UV photolysis of caged Ca(2+). We developed a culture protocol for Ca(2+) uncaging in small synapses on the basis of the generation of small glia cell islands with single neurons on top, which are sufficiently small to be covered with a UV-light flash. Neurons are loaded with the photolabile Ca(2+)-chelator nitrophenyl-EGTA and Ca(2+) indicators, and a UV flash is used to trigger Ca(2+)-uncaging and SV fusion. The protocol takes three weeks to complete and provides unprecedented insights into the mechanisms of transmitter release. Source


Gutig R.,Max Planck Institute for Experimental Medicine
Current Opinion in Neurobiology | Year: 2014

Recent experimental reports have suggested that cortical networks can operate in regimes were sensory information is encoded by relatively small populations of spikes and their precise relative timing. Combined with the discovery of spike timing dependent plasticity, these findings have sparked growing interest in the capabilities of neurons to encode and decode spike timing based neural representations. To address these questions, a novel family of methodologically diverse supervised learning algorithms for spiking neuron models has been developed. These models have demonstrated the high capacity of simple neural architectures to operate also beyond the regime of the well established independent rate codes and to utilize theoretical advantages of spike timing as an additional coding dimension. © 2014. Source


Simons M.,Max Planck Institute for Experimental Medicine | Simons M.,University of Gottingen | Lyons D.A.,University of Edinburgh
Current Opinion in Cell Biology | Year: 2013

The formation of myelin in the central nervous system is a multi-step process that involves coordinated cell-cell interactions and dramatic changes in plasma membrane architecture. First, oligodendrocytes send our numerous highly ramified processes to sample the axonal environment and decide which axon(s) to select for myelination. After this decision is made and individual axon to oligodendrocyte contact has been established, the exploratory process of the oligodendrocyte is converted into a flat sheath that spreads and winds along and around its associated axon to generate a multilayered membrane stack. By compaction of the opposing extracellular layers of membrane and extrusion of almost all cytoplasm from the intracellular domain of the sheath, the characteristic membrane-rich multi-lamellar structure of myelin is formed. Here we highlight recent advances in identifying biophysical and signalling based mechanisms that are involved in axonal selection and myelin sheath generation by oligodendrocytes. A thorough understanding of the mechanisms underlying these events is a prerequisite for the design of novel myelin repair strategies in demyelinating and dysmyelinating diseases. © 2013 Elsevier Ltd. Source


Gutig R.,Max Planck Institute for Experimental Medicine
Science | Year: 2016

The brain routinely discovers sensory clues that predict opportunities or dangers. However, it is unclear how neural learning processes can bridge the typically long delays between sensory clues and behavioral outcomes. Here, I introduce a learning concept, aggregatelabel learning, that enables biologically plausible model neurons to solve this temporal credit assignment problem. Aggregate-label learning matches a neuron's number of output spikes to a feedback signal that is proportional to the number of clues but carries no information about their timing. Aggregate-label learning outperforms stochastic reinforcement learning at identifying predictive clues and is able to solve unsegmented speech-recognition tasks. Furthermore, it allows unsupervised neural networks to discover reoccurring constellations of sensory features even when they are widely dispersed across space and time. Source


Bakhti M.,Max Planck Institute for Experimental Medicine
Cellular and molecular life sciences : CMLS | Year: 2014

Rapid nerve conduction requires the coating of axons by a tightly packed multilayered myelin membrane. In the central nervous system, myelin is formed from cellular processes that extend from oligodendrocytes and wrap in a spiral fashion around an axon, resulting in the close apposition of adjacent myelin membrane bilayers. In this review, we discuss the physical principles underlying the zippering of the plasma membrane of oligodendrocytes at the cytoplasmic and extracellular leaflet. We propose that the interaction of the myelin basic protein with the cytoplasmic leaflet of the myelin bilayer triggers its polymerization into a fibrous network that drives membrane zippering and protein extrusion. In contrast, the adhesion of the extracellular surfaces of myelin requires the down-regulation of repulsive components of the glycocalyx, in order to uncover weak and unspecific attractive forces that bring the extracellular surfaces into close contact. Unveiling the mechanisms of myelin membrane assembly at the cytoplasmic and extracelluar sites may help to understand how the myelin bilayers are disrupted and destabilized in the different demyelinating diseases. Source

Discover hidden collaborations