Time filter

Source Type

Plon, Germany

The Max Planck Institute for Evolutionary Biology is a German institute for evolutionary biology. It is located in Plön, Schleswig-Holstein, Germany. Wikipedia.

Werner B.,Max Planck Institute for Evolutionary Biology
Journal of the Royal Society, Interface / the Royal Society | Year: 2013

Cancers are rarely caused by single mutations, but often develop as a result of the combined effects of multiple mutations. For most cells, the number of possible cell divisions is limited because of various biological constraints, such as progressive telomere shortening, cell senescence cascades or a hierarchically organized tissue structure. Thus, the risk of accumulating cells carrying multiple mutations is low. Nonetheless, many diseases are based on the accumulation of such multiple mutations. We model a general, hierarchically organized tissue by a multi-compartment approach, allowing any number of mutations within a cell. We derive closed solutions for the deterministic clonal dynamics and the reproductive capacity of single clones. Our results hold for the average dynamics in a hierarchical tissue characterized by an arbitrary combination of proliferation parameters. We show that hierarchically organized tissues strongly suppress cells carrying multiple mutations and derive closed solutions for the expected size and diversity of clonal populations founded by a single mutant within the hierarchy. We discuss the example of childhood acute lymphoblastic leukaemia in detail and find good agreement between our predicted results and recently observed clonal diversities in patients. This result can contribute to the explanation of very diverse mutation profiles observed by whole genome sequencing of many different cancers. Source

Milinski M.,Max Planck Institute for Evolutionary Biology
Behavioral Ecology | Year: 2014

The design of brains, sense organs, or immune systems is an impressive product of natural selection, far ahead of human engineering capability. But what if behavior is less well adapted? A bird's perfect eye is useless if it fails to avoid a stalking cat. If we fail in choosing a partner with complementary immunogenes, our ability to detect major histocompatibility complex-dependent body odors is worthless. Besides being able to detect all available prey items, the diet that maximizes net energy gain must be chosen. Individuals that are selected naturally will be those best able to avoid predators, choose mates, select food, and so on. Those with less perfect behavior produce fewer offspring, and their genotypes will disappear. Ecology is the stage on which the fittest have behaved most successfully. Thus, their strategies prevail today. Behavioral ecology is about the optimal design of behavior. © 2014 The Author. Source

Lenz T.L.,Max Planck Institute for Evolutionary Biology
Molecular Ecology | Year: 2015

Understanding how organisms adapt to their local environment is one of the key goals in molecular ecology. Adaptation can be achieved through qualitative changes in the coding sequence and/or quantitative changes in gene expression, where the optimal dosage of a gene's product in a given environment is being selected for. Differences in gene expression among populations inhabiting distinct environments can be suggestive of locally adapted gene regulation and have thus been studied in different species (Whitehead & Crawford; Hodgins-Davis & Townsend). However, in contrast to a gene's coding sequence, its expression level at a given point in time may depend on various factors, including the current environment. Although critical for understanding the extent of local adaptation, it is usually difficult to disentangle the heritable differences in gene regulation from environmental effects. In this issue of Molecular Ecology, Stutz et al. () describe an experiment in which they reciprocally transplanted three-spined sticklebacks (Gasterosteus aculeatus) between independent pairs of small and large lakes. Their experimental design allows them to attribute differences in gene expression among sticklebacks either to lake of origin or destination lake. Interestingly, they find that translocated sticklebacks show a pattern of gene expression more similar to individuals from the destination lake than to individuals from the lake of origin, suggesting that expression of the targeted genes is more strongly regulated by environmental effects than by genetics. The environmental effect by itself is not entirely surprising; however, the relative extent of it is. Especially when put in the context of local adaptation and population differentiation, as done here, these findings cast a new light onto the heritability of differential gene expression and specifically its relative importance during population divergence and ultimately ecological speciation. © 2015 John Wiley & Sons Ltd. Source

Milinski M.,Max Planck Institute for Evolutionary Biology
Philosophical Transactions of the Royal Society B: Biological Sciences | Year: 2016

Decision rules of reciprocity include ‘I help those who helped me’ (direct reci- procity) and ‘I help those who have helped others’ (indirect reciprocity), i.e. I help those who have a reputation to care for others. A person’s reputa tion is a score that members of a social group update whenever they see the person interacting or hear at best multiple gossip about the person’s social interactions. Reputation is the current standing the person has gained from previous investments or refusal of investments in helping others. Is he a good guy, can I trust him or should I better avoid him as a social partner? A good reputation pays off by attracting help from others, even from strangers or members from another group, if the recipient’s reputation is known. Any costly investment in others, i.e. direct help, donations to charity, investment in averting climate change, etc. increases a person’s reputation. I shall argue and illustrate with examples that a person’s known reputation functions like money that can be used whenever the person needs help. Whenever possible I will present tests of predictions of evolutionary theory, i.e. fitness maximizing strategies, mostly by economic experiments with humans. © 2016 The Author(s) Published by the Royal Society. All rights reserved. Source

Haubold B.,Max Planck Institute for Evolutionary Biology
Briefings in Bioinformatics | Year: 2014

Phylogenetics and population genetics are central disciplines in evolutionary biology. Both are based on comparative data, today usually DNA sequences. These have become so plentiful that alignment-free sequence comparison is of growing importance in the race between scientists and sequencing machines. In phylogenetics, efficient distance computation is the major contribution of alignment-free methods. A distance measure should reflect the number of substitutions per site, which underlies classical alignment-based phylogeny reconstruction. Alignment-free distance measures are either based on word counts or on match lengths, and I apply examples of both approaches to simulated and real data to assess their accuracy and efficiency. While phylogeny reconstruction is based on the number of substitutions, in population genetics, the distribution of mutations along a sequence is also considered. This distribution can be explored by match lengths, thus opening the prospect of alignment-free population genomics. © The Author 2013. Published by Oxford University Press. Source

Discover hidden collaborations