Gottingen, Germany

The Max Planck Institute for Biophysical Chemistry in Göttingen is a research institute of the Max Planck Society. Currently, 850 people work at the institute, about half of them are scientists. The Max Planck Institute for Biophysical Chemistry is the only one of the institutes within the Max Planck Society which combines the three classical scientific disciplines – biology, physics and chemistry. Founded in 1971, its initial focus was set on physical and chemical problems. It has since undergone a continuous evolution manifested by an expanding range of core subjects and work areas such as neurobiology, biochemistry and molecular biology. Wikipedia.


Time filter

Source Type

Kuhnlein R.P.,Max Planck Institute for Biophysical Chemistry
Progress in Lipid Research | Year: 2011

Intracellular lipid droplets have long been misconceived as evolutionarily conserved but functionally frugal components of cellular metabolism. An ever-growing repertoire of functions has elevated lipid droplets to fully-fledged cellular organelles. Insights into the multifariousness of these organelles have been obtained from a range of model systems now employed for lipid droplet research including the fruit fly, Drosophila melanogaster. This review summarizes the progress in fly lipid droplet research along four main avenues: the role of lipid droplets in fat storage homeostasis, the control of lipid droplet structure, the lipid droplet surface as a dynamic protein-association platform, and lipid droplets as mobile organelles. Moreover, the research potential of the fruit fly model is discussed with respect to the prevailing general questions in lipid droplet biology. © 2011 Elsevier Ltd. All rights reserved.


Kuhnlein R.P.,Max Planck Institute for Biophysical Chemistry
Journal of Lipid Research | Year: 2012

The fruit fly Drosophila melanogaster is an emerging model system in lipid metabolism research. Lipid droplets are omnipresent and dynamically regulated organelles found in various cell types throughout the complex life cycle of this insect. The vital importance of lipid droplets as energy resources and storage compartments for lipoanabolic components has recently attracted research attention to the basic enzymatic machinery, which controls the delicate balance between triacylglycerol deposition and mobilization in flies. This review aims to present current insights in experimentally supported and inferred biological functions of lipogenic and lipolytic enzymes as well as regulatory proteins, which control the lipid droplet-based storage fat turnover in Drosophila. Copyright © 2012 by the American Society for Biochemistry and Molecular Biology, Inc.


Neher E.,Max Planck Institute for Biophysical Chemistry
Neuron | Year: 2015

The concept of a readily releasable pool (RRP) of synaptic vesicles has been used extensively for the analysis of neurotransmitter release. Traditionally the properties of vesicles in such a pool have been assumed to be homogeneous, and techniques have been developed to determine pool parameters, such as the size of the pool and the probability with which a vesicle is released during an action potential. Increasing evidence, however, indicates that vesicles may be quite heterogeneous with respect to their release probability. The question, therefore, arises: what do the estimates of pool parameters mean in view of such heterogeneity? Here, four methods for obtaining pool estimates are reviewed, together with their underlying assumptions. The consequences of violation of these assumptions are discussed, and how apparent pool sizes are influenced by stimulation strength is explored by simulations. Synaptic vesicles are released by action potentials in an all-or-nothing manner. Erwin Neher explores how estimates for the number of release-ready vesicles and their release probability, as obtained by commonly used analysis methods, are influenced by the fact that "pools" of vesicles are not homogeneous. © 2015 Elsevier Inc.


Will C.L.,Max Planck Institute for Biophysical Chemistry | Luhrmann R.,Max Planck Institute for Biophysical Chemistry
Cold Spring Harbor Perspectives in Biology | Year: 2011

Pre-mRNA splicing is catalyzed by the spliceosome, a multimegadalton ribonucleoprotein (RNP) complex comprised of five snRNPs and numerous proteins. Intricate RNA-RNA and RNP networks, which serve to align the reactive groups of the pre-mRNA for catalysis, are formed and repeatedly rearranged during spliceosome assembly and catalysis. Both the conformation and composition of the spliceosome are highly dynamic, affording the splicing machinery its accuracy and flexibility, and these remarkable dynamics are largely conserved between yeast and metazoans. Because of its dynamic and complex nature, obtaining structural information about the spliceosome represents a major challenge. Electron microscopy has revealed the general morphology of several spliceosomal complexes and their snRNP subunits, and also the spatial arrangement of some of their components. X-ray and NMR studies have provided high resolution structure information about spliceosomal proteins alone or complexed with one or more binding partners. The extensive interplay of RNA and proteins in aligning the pre-mRNA's reactive groups, and the presence of both RNA and protein at the core of the splicing machinery, suggest that the spliceosome is an RNPenzyme. However, elucidation of the precise nature of the spliceosome's active site, awaits the generation of a high-resolution structure of its RNP core. © 2011 Cold Spring Harbor Laboratory Press.


Hatje K.,Max Planck Institute for Biophysical Chemistry
Nucleic acids research | Year: 2013

Accurate exon-intron structures are essential prerequisites in genomics, proteomics and for many protein family and single gene studies. We originally developed Scipio and the corresponding web service WebScipio for the reconstruction of gene structures based on protein sequences and available genome assemblies. WebScipio also allows predicting mutually exclusive spliced exons and tandemly arrayed gene duplicates. The obtained gene structures are illustrated in graphical schemes and can be analysed down to the nucleotide level. The set of eukaryotic genomes available at the WebScipio server is updated on a daily basis. The current version of the web server provides access to ∼3400 genome assembly files of >1100 sequenced eukaryotic species. Here, we have also extended the functionality by adding a module with which expressed sequence tag (EST) and cDNA data can be mapped to the reconstructed gene structure for the identification of all types of alternative splice variants. WebScipio has a user-friendly web interface, and we believe that the improved web server will provide better service to biologists interested in the gene structure corresponding to their protein of interest, including all types of alternative splice forms and tandem gene duplicates. WebScipio is freely available at http://www.webscipio.org.


Risselada H.J.,Max Planck Institute for Biophysical Chemistry | Grubmuller H.,Max Planck Institute for Biophysical Chemistry
Current Opinion in Structural Biology | Year: 2012

SNARE molecules are the core constituents of the protein machinery that facilitate fusion of synaptic vesicles with the presynaptic plasma membrane, resulting in the release of neurotransmitter. On a molecular level, SNARE complexes seem to play a quite versatile and involved role during all stages of fusion. In addition to merely triggering fusion by forcing the opposing membranes into close proximity, SNARE complexes are now seen to also overcome subsequent fusion barriers and to actively guide the fusion reaction up to the expansion of the fusion pore. Here, we review recent advances in the understanding of SNARE-mediated membrane fusion by molecular simulations. © 2012 Elsevier Ltd.


Wahl M.C.,Free University of Berlin | Luhrmann R.,Max Planck Institute for Biophysical Chemistry
Cell | Year: 2015

Spliceosomes are multi-megadalton RNA-protein molecular machines that carry out pre-mRNA splicing, that is, the removal of non-coding intervening sequences (introns) from eukaryotic pre-mRNAs and the ligation of neighboring coding regions (exons) to produce mature mRNA for protein biosynthesis on the ribosome. They are the prototypes of dynamic molecular machines, assembling de novo for each splicing event by the stepwise recruitment of subunits on a substrate. Copyright © 2015 Elsevier Inc. All rights reserved.


Schmitt H.D.,Max Planck Institute for Biophysical Chemistry
Trends in Cell Biology | Year: 2010

Fusion of Golgi-derived COP (coat protein)-I vesicles with the endoplasmic reticulum (ER) is initiated by specific tethering complexes: the Dsl1 (depends on SLY1-20) complex in yeast and the syntaxin 18 complex in mammalian cells. Both tethering complexes are firmly associated with soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) at the ER. The structure of the Dsl1 tethering complex has been determined recently. The complex seems to be designed to expose an unstructured domain of Dsl1p at its top, which is required to capture vesicles. The subunit composition and the interactions within the equivalent mammalian complex are similar. Interestingly, some of the mammalian counterparts have additional functions during mitosis in animal cells. Zw10, the metazoan homolog of Dsl1p, is an important component of a complex that monitors the correct tethering of microtubules to kinetochores during cell division. This review brings together evidence to suggest that there could be common mechanisms behind these different activities, giving clues as to how they might have evolved. © 2010 Elsevier Ltd.


Rodnina M.V.,Max Planck Institute for Biophysical Chemistry
Current Opinion in Structural Biology | Year: 2013

In all contemporary organisms, the active site of the ribosome-the peptidyl transferase center-catalyzes two distinct reactions, peptide bond formation between peptidyl-tRNA and aminoacyl-tRNA as well as the hydrolysis of peptidyl-tRNA with the help of a release factor. However, when provided with appropriate substrates, ribosomes can also catalyze a broad range of other chemical reaction, which provides the basis for orthogonal translation and synthesis of alloproteins from unnatural building blocks. Advances in understanding the mechanisms of the two ubiquitous reactions, the peptide bond formation and peptide release, provide insights into the versatility of the active site of the ribosome. Release factors 1 and 2 and elongation factor P are auxiliary factors that augment the intrinsic catalytic activity of the ribosome in special cases. © 2013 Elsevier Ltd.


Cramer P.,Max Planck Institute for Biophysical Chemistry
Cell | Year: 2014

To celebrate a century of X-ray crystallography, I describe how 100 crystal structures influenced chromatin and transcription research. © 2014 Elsevier Inc. All rights reserved.

Loading Max Planck Institute for Biophysical Chemistry collaborators
Loading Max Planck Institute for Biophysical Chemistry collaborators