Entity

Time filter

Source Type


Raessler M.,Max Planck Institute For Biogeochemie
TrAC - Trends in Analytical Chemistry | Year: 2011

This article summarizes the current methods of determination of non-structural carbohydrates (NSCs) in plant samples based on liquid chromatography (LC). NSCs comprise several types of carbohydrates: sugar alcohols (e.g., sorbitol), monosaccharides (e.g., glucose and fructose), disaccharides (e.g., sucrose), oligosaccharides (e.g., raffinose) and polysaccharides [e.g., starch and polyfructans (e.g., inulin)]. NSCs are important in plant metabolism and have to be strictly distinguished from all sorts of structural carbohydrates (e.g., polysaccharide cellulose) that make up the backbone of the plants. Consequently, preservation of structural carbohydrates is a crucial step during sample preparation for NSC determination and is therefore addressed.Sugar alcohols, monosaccharides, disaccharides and those oligosaccharides that are easily soluble in polar solvents can be analyzed directly by high-performance LC. They are also referred to as free carbohydrates (FCs).However, polysaccharides are generally submitted to hydrolyzation into monomers prior to their quantitative analysis. This can be done either chemically, using acids, or enzymatically - both methods are discussed. For identification and quantification of the NSCs after LC separation, the following detectors are used: pulsed amperometry, refractive index, evaporate light scattering and finally, mass spectrometry. © 2011 Elsevier Ltd. Source


Steinhof A.,Max Planck Institute For Biogeochemie
Radiocarbon | Year: 2013

The Jena Analysis Code (JAC) was developed at the Jena radiocarbon laboratory for the analysis of all 14C accelerator mass spectrometry (AMS) data measured there. The fundamental principles and algorithms of JAC are presented here, along with the equally important checking procedures. JAC places emphasis on the uncertainty due to background subtraction and other contributions to the statistical uncertainty of 14C events. © 2013 by the Arizona Board of Regents on behalf of the University of Arizona. Source


Kleidon A.,Max Planck Institute For Biogeochemie | Malhi Y.,University of Oxford | Cox P.M.,University of Exeter
Philosophical Transactions of the Royal Society B: Biological Sciences | Year: 2010

The coupled biosphere-atmosphere system entails a vast range of processes at different scales, from ecosystem exchange fluxes of energy, water and carbon to the processes that drive global biogeochemical cycles, atmospheric composition and, ultimately, the planetary energy balance. These processes are generally complex with numerous interactions and feedbacks, and they are irreversible in their nature, thereby producing entropy. The proposed principle of maximum entropy production (MEP), based on statistical mechanics and information theory, states that thermodynamic processes far from thermodynamic equilibrium will adapt to steady states at which they dissipate energy and produce entropy at the maximum possible rate. This issue focuses on the latest development of applications of MEP to the biosphere-atmosphere system including aspects of the atmospheric circulation, the role of clouds, hydrology, vegetation effects, ecosystem exchange of energy and mass, biogeochemical interactions and the Gaia hypothesis. The examples shown in this special issue demonstrate the potential of MEP to contribute to improved understanding and modelling of the biosphere and the wider Earth system, and also explore limitations and constraints to the application of the MEP principle. © 2010 The Royal Society. Source


Kleidon A.,Max Planck Institute For Biogeochemie
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences | Year: 2012

The Earth's chemical composition far from chemical equilibrium is unique in our Solar System, and this uniqueness has been attributed to the presence of widespread life on the planet. Here, I show how this notion can be quantified using non-equilibrium thermodynamics. Generating and maintaining disequilibrium in a thermodynamic variable requires the extraction of power from another thermodynamic gradient, and the second law of thermodynamics imposes fundamental limits on how much power can be extracted. With this approach and associated limits, I show that the ability of abiotic processes to generate geochemical free energy that can be used to transform the surface-atmosphere environment is strongly limited to less than 1TW. Photosynthetic life generates more than 200TW by performing photochemistry, thereby substantiating the notion that a geochemical composition far from equilibrium can be a sign for strong biotic activity. Present-day free energy consumption by human activity in the form of industrial activity and human appropriated net primary productivity is of the order of 50TW and therefore constitutes a considerable term in the free energy budget of the planet. When aiming to predict the future of the planet, we first note that since global changes are closely related to this consumption of free energy, and the demands for free energy by human activity are anticipated to increase substantially in the future, the central question in the context of predicting future global change is then how human free energy demands can increase sustainably without negatively impacting the ability of the Earth system to generate free energy. This question could be evaluated with climate models, and the potential deficiencies in these models to adequately represent the thermodynamics of the Earth system are discussed. Then, I illustrate the implications of this thermodynamic perspective by discussing the forms of renewable energy and planetary engineering that would enhance the overall free energy generation and, thereby 'empower' the future of the planet. © 2012 The Royal Society. Source


Kleidon A.,Max Planck Institute For Biogeochemie
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences | Year: 2010

The present-day atmosphere is in a unique state far from thermodynamic equilibrium. This uniqueness is for instance reflected in the high concentration of molecular oxygen and the low relative humidity in the atmosphere. Given that the concentration of atmospheric oxygen has likely increased throughout Earth-system history, we can ask whether this trend can be generalized to a trend of Earth-system evolution that is directed away from thermodynamic equilibrium, why we would expect such a trend to take place and what it would imply for Earth-system evolution as a whole. The justification for such a trend could be found in the proposed general principle of maximum entropy production (MEP), which states that non-equilibrium thermodynamic systems maintain steady states at which entropy production is maximized. Here, i justify and demonstrate this application of MEP to the Earth at the planetary scale. I first describe the non-equilibrium thermodynamic nature of Earth-system processes and distinguish processes that drive the system's state away from equilibrium from those that are directed towards equilibrium. I formulate the interactions among these processes from a thermodynamic perspective and then connect them to a holistic view of the planetary thermodynamic state of the Earth system. In conclusion, non-equilibrium thermodynamics and MEP have the potential to provide a simple and holistic theory of Earth-system functioning. This theory can be used to derive overall evolutionary trends of the Earth's past, identify the role that life plays in driving thermodynamic states far from equilibrium, identify habitability in other planetary environments and evaluate human impacts on Earth-system functioning. © 2010 The Royal Society. Source

Discover hidden collaborations