Time filter

Source Type

Köln, Germany

Bruckskotten M.,Max Planck Institute for Heart and Lung Research | Looso M.,Max Planck Institute for Heart and Lung Research | Reinhardt R.,Max Planck Genome Center | Braun T.,Max Planck Institute for Heart and Lung Research | Borchardt T.,Max Planck Institute for Heart and Lung Research
Nucleic Acids Research | Year: 2012

Notophthalmus viridescens, a member of the salamander family is an excellent model organism to study regenerative processes due to its unique ability to replace lost appendages and to repair internal organs. Molecular insights into regenerative events have been severely hampered by the lack of genomic, transcriptomic and proteomic data, as well as an appropriate database to store such novel information. Here, we describe 'Newt-omics' (http://newt-omics.mpi-bn.mpg.de), a database, which enables researchers to locate, retrieve and store data sets dedicated to the molecular characterization of newts. Newt-omics is a transcript-centred database, based on an Expressed Sequence Tag (EST) data set from the newt, covering ∼50 000 Sanger sequenced transcripts and a set of high-density microarray data, generated from regenerating hearts. Newt-omics also contains a large set of peptides identified by mass spectrometry, which was used to validate 13 810 ESTs as true protein coding. Newt-omics is open to implement additional high-throughput data sets without changing the database structure. Via a user-friendly interface Newt-omics allows access to a huge set of molecular data without the need for prior bioinformatical expertise. © The Author(s) 2011.

Kleppe L.,Norwegian Institute of Marine Research | Edvardsen R.B.,Norwegian Institute of Marine Research | Kuhl H.,Max Planck Institute for Molecular Genetics | Malde K.,Norwegian Institute of Marine Research | And 5 more authors.
BMC Genomics | Year: 2012

Background: Zygotic transcription in fish embryos initiates around the time of gastrulation, and all prior development is initiated and controlled by maternally derived messenger RNAs. Atlantic cod egg and embryo viability is variable, and it is hypothesized that the early development depends upon the feature of these maternal RNAs. Both the length and the presence of specific motifs in the 3'UTR of maternal RNAs are believed to regulate expression and stability of the maternal transcripts. Therefore, the aim of this study was to characterize the overall composition and 3'UTR structure of the most common maternal RNAs found in cod eggs and pre-zygotic embryos.Results: 22229 Sanger-sequences were obtained from 3'-end sequenced cDNA libraries prepared from oocyte, 1-2 cell, blastula and gastrula stages. Quantitative PCR revealed that EST copy number below 9 did not reflect the gene expression profile. Consequently genes represented by less than 9 ESTs were excluded from downstream analyses, in addition to sequences with low-quality gene hits. This provided 12764 EST sequences, encoding 257 unique genes, for further analysis. Mitochondrial transcripts accounted for 45.9-50.6% of the transcripts isolated from the maternal stages, but only 12.2% of those present at the onset of zygotic transcription. 3'UTR length was predicted in nuclear sequences with poly-A tail, which identified 191 3'UTRs. Their characteristics indicated a more complex regulation of transcripts that are abundant prior to the onset of zygotic transcription. Maternal and stable transcripts had longer 3'UTR (mean 187.1 and 208.8 bp) and more 3'UTR isoforms (45.7 and 34.6%) compared to zygotic transcripts, where 15.4% had 3'UTR isoforms and the mean 3'UTR length was 76 bp. Also, diversity and the amount of putative polyadenylation motifs were higher in both maternal and stable transcripts.Conclusions: We report on the most pronounced processes in the maternally transferred cod transcriptome. Maternal stages are characterized by a rich abundance of mitochondrial transcripts. Maternal and stable transcripts display longer 3'UTRs with more variation of both polyadenylation motifs and 3'UTR isoforms. These data suggest that cod eggs possess a complex array of maternal RNAs which likely act to tightly regulate early developmental processes in the newly fertilized egg. © 2012 Kleppe et al.; licensee BioMed Central Ltd.

Vieira F.A.,University of Algarve | Thorne M.A.S.,Natural Environment Research Council | Stueber K.,Max Planck Genome Center | Darias M.,IRD Montpellier | And 3 more authors.
General and Comparative Endocrinology | Year: 2013

An articulated endoskeleton that is calcified is a unifying innovation of the vertebrates, however the molecular basis of the structural divergence between terrestrial and aquatic vertebrates, such as teleost fish, has not been determined. In the present study long-read next generation sequencing (NGS, Roche 454 platform) was used to characterize acellular perichondral bone (vertebrae) and chondroid bone (gill arch) in the gilthead sea bream (Sparus auratus). A total of 15.97 and 14.53. Mb were produced, respectively from vertebrae and gill arch cDNA libraries and yielded 32,374 and 28,371 contigs (consensus sequences) respectively. 10,455 contigs from vertebrae and 10,625 contigs from gill arches were annotated with gene ontology terms. Comparative analysis of the global transcriptome revealed 4249 unique transcripts in vertebrae, 4201 unique transcripts in the gill arches and 3700 common transcripts. Several core gene networks were conserved between the gilthead sea bream and mammalian skeleton. Transcripts for putative endocrine factors were identified in acellular gilthead sea bream bone suggesting that in common with mammalian bone it can act as an endocrine tissue. The acellular bone of the vertebra, in contrast to current opinion based on histological analysis, was responsive to a short fast and significant (p<. 0.05) down-regulation of several transcripts identified by NGS, osteonectin, osteocalcin, cathepsin K and IGFI occurred. In gill arches fasting caused a significant (p<. 0.05) down-regulation of osteocalcin and up-regulation of MMP9. © 2013 Elsevier Inc.

Skern-Mauritzen R.,Norwegian Institute of Marine Research | Skern-Mauritzen R.,Salmon Louse Research Center | Malde K.,Norwegian Institute of Marine Research | Besnier F.,Norwegian Institute of Marine Research | And 12 more authors.
Journal of Natural History | Year: 2013

Molecular genetic tools have become standard in biological studies of both model and non-model species. This has created a growing need for sequence information, a resource hitherto limited for many species. With new sequencing technologies this is rapidly changing, and whole genome shotgun sequencing has become a realistic goal for many species. However, present sequencing protocols require more DNA than can be extracted from single individuals of many small metazoans, potentially forcing sequencing projects to perform sequencing on samples derived from several individuals. A pertinent question thus arises: can wild samples be used or is inbreeding necessary? In the present study we compare assemblies generated using sequence data from inbred and wild Lepeophtheirus salmonis. The results indicate not only that measures to reduce the genetic variability may significantly improve the final assemblies but also that deeper coverage to some extent can compensate for the detrimental effects of natural sequence variability. © 2013 Copyright Taylor and Francis Group, LLC.

Frey F.P.,Max Planck Institute for Plant Breeding Research | Urbany C.,Max Planck Institute for Plant Breeding Research | Huttel B.,Max Planck Genome Center | Reinhardt R.,Max Planck Genome Center | Stich B.,Max Planck Institute for Plant Breeding Research
BMC genomics | Year: 2015

BACKGROUND: Climate change will lead in the future to an occurrence of heat waves with a higher frequency and duration than observed today, which has the potential to cause severe damage to seedlings of temperate maize genotypes. In this study, we aimed to (I) assess phenotypic variation for heat tolerance of temperate European Flint and Dent maize inbred lines, (II) investigate the transcriptomic response of temperate maize to linearly increasing heat levels and, (III) identify genes associated with heat tolerance in a set of genotypes with contrasting heat tolerance behaviour.RESULTS: Strong phenotypic differences with respect to heat tolerance were observed between the examined maize inbred lines on a multi-trait level. We identified 607 heat responsive genes as well as 39 heat tolerance genes.CONCLUSION: Our findings indicate that individual inbred lines developed different genetic mechanisms in response to heat stress. We applied a novel statistical approach enabling the integration of multiple genotypes and stress levels in the analysis of abiotic stress expression studies.

Discover hidden collaborations