Ontario, CA, United States
Ontario, CA, United States

Time filter

Source Type

Root D.E.,Agilent Technologies | Xu J.,Agilent Technologies | Horn J.,Agilent Technologies | Iwamoto M.,Agilent Technologies | Simpson G.,Maury Microwave Corporation
2010 Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits, INMMiC 2010 - Conference Proceedings | Year: 2010

This paper reviews and contrasts two complementary device modeling approaches based on data readily obtainable from a nonlinear vector network analyzer (NVNA) [1]. The first approach extends the application of waveform data to improve the characterization, parameter extraction, and validation methodologies for "compact" transistor models. NVNA data is used to train artificial neural network -based constitutive relations depending on multiple coupled dynamic variables, including temperature and trap states for an advanced compact model suitable for GaAs and GaN transistors. The second approach is based on load-dependent X-parameters* [2], [3], [5], [6], measured using an output tuner working with the NVNA. It is demonstrated that X-parameters measured versus load at the fundamental frequency predict well the independent effects of harmonic load tuning on a 10W GaN packaged transistor without having to independently control harmonic loads during characterization. A comparison of the respective merits of the two approaches is presented. © 2010 IEEE.


Dudkiewicz S.,Maury Microwave Corporation
Microwave Journal | Year: 2011

The improvements in large-signal device characterization brought on by a new class of vector receiver load pull systems compared to older scalar techniques using calibrated automated load pull tuners is discussed. Because powers are measured from power meters and de-embedded through tuners, extremely accurate tuner characterization and tuner repeatability are required. Vector-receiver load pull overcomes these weaknesses by directly measuring the a- and b-waves of a device in real-time, thereby determining the large-signal input impedance at each input power and enabling the determination of delivered input power, power gain and power-added efficiency. Since the system is calibrated at the DUT reference plane, inaccuracies arising from tuner de-embedding, and possibly lengthy tuner characterizations are eliminated. Additionally, overall measurement time is greatly reduced by the system's ability to mathematically compute source contours and eliminate the multiple source-pull load pull iterations required by traditional load pull.


Patent
Maury Microwave Inc. | Date: 2014-05-22

A solid state impedance tuner or impedance tuner system including a housing structure and at least two solid state tuner modules electrically combined and disposed in one package within the housing structure. Each tuner module includes at least one solid state control element. Another embodiment is directed to an impedance tuner module card configured in a standardized system architecture. The card includes a chassis board, and at least one solid state tuner module integrated on the card and supported on or by the chassis board, each module including at least one solid state control element. Methods for calibrating a solid state impedance tuner that includes at least two solid state tuner modules combined in one package are disclosed.


Patent
Maury Microwave Inc. | Date: 2014-07-30

A mechanical impedance tuner has at least two probe carriages mounted for movement along an axis parallel to the center conductor. The at least two probe carriages including a first probe carriage and a second probe carriage. Each probe carriage has at least N probes where N is an integer equal to or greater than one, and at least one of the N probes is mechanically different or of different nominal geometry from the probes on at least one of the other carriages so that each such probe has an non-identical frequency response.


Patent
Maury Microwave Inc. | Date: 2015-05-27

An impedance tuner includes a controller, an RF transmission line, and a movable capacitive object configured for movement commanded by the controller relative to the transmission line to alter impedance. A position sensor is configured to provide feedback position data to the controller indicative of the actual position of the capacitive object after it is moved. The controller is configured to utilize the feedback position data in a closed loop to position the capacitive object at a desired position within a tolerance.


Patent
Maury Microwave Inc. | Date: 2014-10-25

Methods are described for measuring data in a test setup including an impedance tuner. In an exemplary embodiment, the data is data for measuring noise parameters. The data is measured versus a sweep parameter for one tuner state at a time.


Patent
Maury Microwave Inc. | Date: 2014-08-18

Signal measuring systems, and measurement methods are disclosed.


Patent
Maury Microwave Inc. | Date: 2013-05-28

An impedance tuner system that uses at least one passive tuner and at least one active tuner to control one or more impedances at a reference plane or planes. Each of the at least one active tuners operates at a target frequency at which the impedance is to be controlled. The passive tuner is set to a passive tuner target impedance before active tuners are set to their target impedances.


Patent
Maury Microwave Inc. | Date: 2015-10-23

Systems and methods of measuring and determining noise parameters. An exemplary method measures noise data and determines element values of a device noise model for a device under test (DUT), using a test system including an impedance tuner coupled to an input of the DUT for presenting a controllable variable impedance to the DUT and a noise receiver coupled to an output of the DUT. Noise data is measured as a function of at least one measurement parameter. The measured data includes raw noise data read from the noise receiver, and is used to determine element values of the device noise model. The system may include a database of device models


Patent
Maury Microwave Inc. | Date: 2014-10-27

An impedance tuner system, usable in a measurement system including at least one measurement system device, the tuner system comprising the impedance tuner having a signal transmission line, and an impedance-varying system coupled to the transmission line, and responsive to command signals to selectively vary the impedance presented by the impedance tuner. An impedance tuner controller is configured to generate the command signals, and wherein measurement device drivers and at least one of characterization, calibration and measurement algorithms are embedded into the tuner controller, the tuner controller configured to allow a user to control execution of said at least one of the characterization, calibration and measurement algorithms using the tuner controller.

Loading Maury Microwave Corporation collaborators
Loading Maury Microwave Corporation collaborators