Mattson Technology

Fremont, CA, United States

Mattson Technology

Fremont, CA, United States
SEARCH FILTERS
Time filter
Source Type

Patent
Mattson Technology | Date: 2017-01-27

Preheat processes for a millisecond anneal system are provided. In one example implementation, a heat treatment process can include receiving a substrate on a wafer support in a processing chamber of a millisecond anneal system; heating the substrate to an intermediate temperature; and heating the substrate using a millisecond heating flash. Prior to heating the substrate to the intermediate temperature, the process can include heating the substrate to a pre-bake temperature for a soak period.


Patent
Mattson Technology | Date: 2017-01-11

Systems, methods, and apparatus for processing a substrate in a plasma processing apparatus using a variable pattern separation grid are provided. In one example implementation, a plasma processing apparatus can have a plasma chamber and a processing chamber separated from the plasma chamber. The apparatus can further include a variable pattern separation grid separating the plasma chamber and the processing chamber. The variable pattern separation grid can include a plurality grid plates. Each grid plate can have a grid pattern with one or more holes. At least one of the plurality of grid plates is movable relative to the other grid plates in the plurality of grid plates such that the variable pattern separation grid can provide a plurality of different composite grid patterns.


A method and system for calibrating temperature measurement devices, such as pyrometers, in thermal processing chambers are disclosed. According to the present invention, the system includes a calibrating light source that emits light energy onto a substrate contained in the thermal processing chamber. A light detector then detects the amount of light that is being transmitted through the substrate. The amount of detected light energy is then used to calibrate a temperature measurement device that is used in the system.


Patent
Mattson Technology | Date: 2014-11-04

A method for removing a doped amorphous carbon mask from a semiconductor substrate is disclosed. The method comprises generating a plasma to be used in treating the substrate, wherein the plasma comprises an oxygen containing gas, a halogen containing gas, and a hydrogen containing gas; and treating the substrate by exposing the substrate to the plasma. The doped amorphous carbon mask can be a boron doped amorphous carbon mask or a nitrogen doped amorphous carbon mask. The method can result in a mask removal rate ranging from about 1,000 ngstrms/minute to about 12,000 ngstrms/minute. Further, gases can be applied to the substrate before plasma treatment, after plasma treatment, or both to reduce the amount of defects or pinholes found in the substrate film.


Patent
Mattson Technology | Date: 2014-02-05

As part of a system for processing workpieces, a workpiece support arrangement, separate from a process chamber arrangement supports at least two workpieces at least generally in a stacked relationship to form a workpiece column. A transfer arrangement transports at least two of the workpieces between the workpiece column and the process chamber arrangement by simultaneously moving the two workpieces at least generally along first and second transfer paths, respectively, that are defined between the workpiece column and the first and second process stations. The transfer arrangement can simultaneously move untreated and treated workpieces. Vertical motion swing arms and coaxial swing arms are described. A pair of spaced apart swing arms, the workpiece column and the processing stations can cooperatively define a pentagonal shape. Timing belt backlash elimination, a dual degree of freedom slot valve and low point chamber pumping, for removing chamber contaminants, are also described.


The plasma reactor of the invention is intended for treating the surfaces of objects such as semiconductor wafers and large display panels, or the like, with plasma. The main part of the plasma reactor is an array of RF antenna cells, which are deeply immersed into the interior of the working chamber. Each antenna cell has a ferromagnetic core with a heat conductor and a coil wound onto the core. The core and coil are sealed in the protective cap. Deep immersion of the antenna cells having the structure of the invention provides high efficiency of plasma excitation, while the arrangement of the plasma cells and possibility of their individual adjustment provide high uniformity of plasma distribution and possibility of adjusting plasma parameters, such as plasma density, in a wide range.


Apparatus, systems, and methods for controlling azimuthal uniformity of an etch process in a plasma processing chamber are provided. In one embodiment, a plasma processing apparatus can include a plasma processing chamber and an RF cage disposed above the plasma processing chamber. A dielectric window can separate the plasma processing chamber and the RF cage. The apparatus can include a plasma generating coil disposed above the dielectric window. The plasma generating coil can be operable to generate an inductively coupled plasma in the plasma processing chamber when energized. The apparatus further includes a conductive surface disposed within the RF cage proximate to at least a portion of the plasma generating coil. The conductive surface is arranged to generate an azimuthally variable inductive coupling between the conductive surface and the plasma generating coil when the plasma generating coil is energized.


Patent
Mattson Technology | Date: 2014-12-23

A method and apparatus are provided for processing a substrate with a radiofrequency inductive plasma in the manufacture of a device. The inductive plasma is maintained with an inductive plasma applicator having one or more inductive coupling elements. There are thin windows between the inductive coupling elements and the interior of the processing chamber. Various embodiments have magnetic flux concentrators in the inductive coupling element and feed gas holes interspersed among the inductive coupling elements. The thin windows, magnetic flux concentrators, and interspersed feed gas holes are useful to effectuate uniform processing, high power transfer efficiency, and a high degree of coupling between the applicator and plasma. In some embodiments, capacitive current is suppressed using balanced voltage to power an inductive coupling element.


Systems and methods for protecting vacuum seals in a plasma processing system are provided. The processing system can include a vacuum chamber defining a sidewall and an inductive coil wrapped around at least a portion of the sidewall. A vacuum seal can be positioned between the sidewall of the vacuum chamber and a heat sink. A thermally conductive bridge can be coupled between the sidewall and heat sink. Further, the thermally conductive bridge can be positioned relative to the vacuum seal such that the thermally conductive bridge redirects a conductive heat path from the sidewall or any heat source to the heat sink so that the heat path bypasses the vacuum seal.


Patent
Mattson Technology | Date: 2014-03-05

An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly linear lamps for emitting light energy onto a wafer. The linear lamps can be placed in various configurations. In accordance with the present invention, tuning devices which are used to adjust the overall irradiance distribution of the light energy sources are included in the heating device. The tuning devices can be, for instance, are lamps or lasers.

Loading Mattson Technology collaborators
Loading Mattson Technology collaborators