Time filter

Source Type

Kandarova H.,Mattek Corporation | Kandarova H.,MatTek in Vitro Life Science Laboratories | Letaaiova S.,MatTek in Vitro Life Science Laboratories
Interdisciplinary Toxicology | Year: 2011

The development of alternative methods to animal experimentation has progressed rapidly over the last 20 years. Today, in vitro and in silico methods have an important role in the hazard identification and assessment of toxicology profile of compounds. Advanced alternative methods and their combinations are also used for safety assessment of final products. Several alternative methods, which were scientifically validated and accepted by competent regulatory bodies, can be used for regulatory toxicology purposes, thus reducing or fully replacing living animals in toxicology experimentation. The acceptance of the alternative methods as valuable tools of modern toxicology has been recognized by regulators, including OECD, FDA and EPA.This paper provides a brief overview of the topic "alternative methods in toxicology" and focuses on pre-validated and validated alternative methods and their position in the modern toxicology. Copyright © 2011 Slovak Toxicology Society SETOX. Source

Kolle S.N.,BASF | Kandarova H.,MatTek in Vitro Life Science Laboratories | Wareing B.,BASF | Van Ravenzwaay B.,BASF | Landsiedel R.,BASF
ATLA Alternatives to Laboratory Animals | Year: 2011

In 2009, the Bovine Corneal Opacity and Permeability (BCOP) test was accepted by the regulatory bodies for the identification of corrosive and severe ocular irritants (Global Harmonised System [GHS] Category 1). However, no in vitro test is currently accepted for the differentiation of ocular irritants (GHS Category 2) and non-irritants (GHS No Category). Human reconstructed tissue models have been suggested for incorporation into a tiered testing strategy to ultimately replace the Draize rabbit eye irritation test (OECD TG 405). The purpose of this study was to evaluate whether the EpiOcular™ reconstructed cornealike tissue model and the COLIPA pre-validated EpiOcular Eye Irritation Test (EpiOcular-EIT) could be used as suitable components of this testing strategy. The in-house validation of the EpiOcular-EIT was performed by using 60 test substances, including a broad variety of chemicals and formulations for which in vivo data (from the Draize rabbit eye irritation test) were available. The test substances fell into the following categories: 18 severe irritants/corrosives (Category 1), 21 irritants (Category 2), and 21 non-irritants (No Category). Test substances that decreased tissue viability to ≤ 60% (compared to the negative control tissue) were considered to be eye irritants (Category 1/2). Test substances resulting in tissue viability of > 60% were considered to be non-irritants (No Category). For the assessed dataset and the classification cut-off of 60% viability, the EpiOcular-EIT provided 98% and 84% sensitivity, 64% and 90% specificity, and 85% and 86% overall accuracy for the literature reference and BASF proprietary substances, respectively. Applying a 50% tissue viability cut-off to distinguish between irritants and non-irritants resulted in 93% and 82% sensitivity, 68% and 100% specificity, and 84% and 88% accuracy for the literature reference and BASF proprietary substances, respectively. Further, in the EpiOcular-EIT (60% cut-off), 100% of severely irritating substances under-predicted by the BCOP assay were classified as Category 1/2. The results obtained in this study, based on 60 test substances, indicate that the EpiOcular-EIT and the BCOP assay can be combined in a testing strategy to identify strong/severe eye irritants (Category 1), moderate and mild eye irritants (Category 2), and non-irritants (No Category) in routine testing. In particular, when the bottom-up strategy with the 60% viability cut-off was employed, none of the severely irritating substances (Category 1) were under-predicted to be non-irritant. Sensitivity for Category 1/2 substances was 100% for literature reference substances and 89% for BASF SE proprietary substances. Source

Kaluzhny Y.,Mattek Corporation | Kandarova H.,MatTek in Vitro Life Science Laboratories | Handa Y.,Kurabo Industries Ltd. | DeLuca J.,Mattek Corporation | And 5 more authors.
ATLA Alternatives to Laboratory Animals | Year: 2015

The 7th Amendment to the EU Cosmetics Directive and the EU REACH Regulation have reinforced the need for in vitro ocular test methods. Validated in vitro ocular toxicity tests that can predict the human response to chemicals, cosmetics and other consumer products are required for the safety assessment of materials that intentionally, or inadvertently, come into contact with the eye. The EpiOcular Eye Irritation Test (EIT), which uses the normal human cell-based EpiOcular™ tissue model, was developed to address this need. The EpiOcular-EIT is able to discriminate, with high sensitivity and accuracy, between ocular irritant/corrosive materials and those that require no labelling. Although the original EpiOcular-EIT protocol was successfully pre-validated in an international, multicentre study sponsored by COLIPA (the predecessor to Cosmetics Europe), data from two larger studies (the EURL ECVAM COLIPA validation study and an independent in-house validation at BASF SE) resulted in a sensitivity for the protocol for solids that was below the acceptance criteria set by the Validation Management Group (VMG) for eye irritation, and indicated the need for improvement of the assay's sensitivity for solids. By increasing the exposure time for solid materials from 90 minutes to 6 hours, the optimised EpiOcular-EIT protocol achieved 100% sensitivity, 68.4% specificity and 84.6% accuracy, thereby meeting all the acceptance criteria set by the VMG. In addition, to satisfy the needs of Japan and the Pacific region, the EpiOcular-EIT method was evaluated for its performance after extended shipment and storage of the tissues (4 5 days), and it was confirmed that the assay performs with similar levels of sensitivity, specificity and reproducibility in these circumstances. Source

Kaluzhny Y.,Mattek Corporation | Kandarova H.,MatTek in Vitro Life Science Laboratories | Hayden P.,Mattek Corporation | Kubilus J.,Mattek Corporation | And 2 more authors.
ATLA Alternatives to Laboratory Animals | Year: 2011

The recently implemented 7th Amendment to the EU Cosmetics Directive and the EU REACH legislation have heightened the need for in vitro ocular test methods. To address this need, the EpiOcular™eye irritation test (EpiOcular-EIT), which utilises the normal (non-transformed) human cell-based EpiOcular tissue model, has been developed. The EpiOcular-EIT prediction model is based on an initial training set of 39 liquid and 21 solid test substances and uses a single exposure period and a single cut-off in tissue viability, as determined by the MTT assay. A chemical is classified as an irritant (GHS Category 1 or 2), if the tissue viability is ≤ 60%, and as a non-irritant (GHS unclassified), if the viability is > 60%. EpiOcular-EIT results for the training set, along with results for an additional 52 substances, which included a range of alcohols, hydrocarbons, amines, esters, and ketones, discriminated between ocular irritants and non-irritants with 98.1% sensitivity, 72.9% specificity, and 84.8% accuracy. To ensure the long-term commercial viability of the assay, EpiOcular tissues produced by using three alternative cell culture inserts were evaluated in the EpiOcular-EIT with 94 chemicals. The assay results obtained with the initial insert and the three alternative inserts were very similar, as judged by correlation coefficients (r 2) that ranged from 0.82 to 0.96. The EpiOcular-EIT was pre-validated in 2007/2008, and is currently involved in a formal, multi-laboratory validation study sponsored by the European Cosmetics Association (COLIPA) under the auspices of the European Centre for the Validation of Alternative Methods (ECVAM). The EpiOcular-EIT, together with EpiOcular's long history of reproducibility and proven utility for ultra-mildness testing, make EpiOcular a useful model for addressing current legislation related to animal use in the testing of potential ocular irritants. Source

Kaluzhny Y.,Mattek Corporation | Kandarova H.,MatTek in Vitro Life Science Laboratories | D'argembeau-Thornton L.,Mattek Corporation | Kearney P.,Mattek Corporation | Klausner M.,Mattek Corporation
Journal of Visualized Experiments | Year: 2015

To comply with the Seventh Amendment to the EU Cosmetics Directive and EU REACH legislation, validated non-animal alternative methods for reliable and accurate assessment of ocular toxicity in man are needed. To address this need, we have developed an eye irritation test (EIT) which utilizes a three dimensional reconstructed human cornea-like epithelial (RhCE) tissue model that is based on normal human cells. The EIT is able to separate ocular irritants and corrosives (GHS Categories 1 and 2 combined) and those that do not require labeling (GHS No Category). The test utilizes two separate protocols, one designed for liquid chemicals and a second, similar protocol for solid test articles. The EIT prediction model uses a single exposure period (30 min for liquids, 6 hr for solids) and a single tissue viability cut-off (60.0% as determined by the MTT assay). Based on the results for 83 chemicals (44 liquids and 39 solids) EIT achieved 95.5/68.2/ and 81.8% sensitivity/specificity and accuracy (SS&A) for liquids, 100.0/68.4/ and 84.6% SS&A for solids, and 97.6/68.3/ and 83.1% for overall SS&A. The EIT will contribute significantly to classifying the ocular irritation potential of a wide range of liquid and solid chemicals without the use of animals to meet regulatory testing requirements. The EpiOcular EIT method was implemented in 2015 into the OECD Test Guidelines as TG 492. © 2015 Journal of Visualized Experiments. Source

Discover hidden collaborations