Time filter

Source Type

Patent
Matsumoto Yushi Seiyaku Co. | Date: 2015-05-18

Heat-expandable microspheres having an almost spherical shape and high expansion performance and exhibiting good workability when mixed with a resin, a process for producing the heat-expandable microspheres, and applications thereof. The heat-expandable microspheres include a thermoplastic resin shell and a blowing agent encapsulated therein and vaporizable by heating. The thermoplastic resin is produced by polymerizing a polymerizable component containing a methacrylate monomer and a carboxyl-containing monomer, and optionally containing a nitrile monomer in an amount ranging from 0 to 30 parts by weight to 100 parts by weight of the total amount of the methacrylate monomer and the carboxyl-containing monomer. The blowing agent contains a hydrocarbon having at least 8 carbon atoms per molecule.


Heat-expandable microspheres with high encapsulation efficiency of a blowing agent and good heat-expansion performance, a process for reproducibly producing the heat-expandable microspheres and application thereof are provided. The heat-expandable microspheres comprise essentially a thermoplastic resin shell and a blowing agent encapsulated therein, and contain not more than 500 ppm of silicon, not more than 350 ppm of aluminum and not more than 600 ppm of the total of the silicon and aluminum. The heat-expandable microspheres retain at least 70% of the blowing agent encapsulated therein at the temperature which is the average of their expansion-initiation temperature and maximum expansion temperature.


Patent
Matsumoto Yushi Seiyaku CO. | Date: 2014-12-03

Heat-expandable microspheres with high encapsulation efficiency of a blowing agent and good heat-expansion performance, a process for reproducibly producing the heat-expandable microspheres and application thereof are provided. The heat-expandable microspheres comprise essentially a thermoplastic resin shell and a blowing agent encapsulated therein, and contain not more than 500 ppm of silicon, not more than 350 ppm of aluminum and not more than 600 ppm of the total of the silicon and aluminum. The heat-expandable microspheres retain at least 70 % of the blowing agent encapsulated therein at the temperature which is the average of their expansion-initiation temperature and maximum expansion temperature.


Patent
Matsumoto Yushi Seiyaku Co. | Date: 2013-02-27

The present invention aims to provide a sizing agent for a reinforcement fiber used for reinforcing thermoplastic matrix resins. The sizing agent uniformly spreads on reinforcement fiber surface and imparts, to a reinforcement fiber, both excellent splittability and bonding performance to thermoplastic matrix resins. The sizing agent for a reinforcement fiber of the present invention comprises essentially an ester compound (A) having a vinyl ester group, acrylate group or methacrylate group bonded to at least one of the chain ends of the main chain of the ester compound (A), and of a polyoxyalkylene alkyl ether (B) which is an adduct between an alkylene oxide and a C_(4-14 )monohydric alcohol. When water is added to the sizing agent thereby producing a mixture with a nonvolatile content of 1 weight %, the mixture exhibits a dynamic surface tension ranging from 40 to 55 mN/m determined by the maximum bubble pressure method when bubbles are blown into the mixture at the rate of one bubble per 100 milliseconds.


Patent
Matsumoto Yushi Seiyaku Co. | Date: 2015-01-30

A masterbatch containing an organic base component and heat-expandable microspheres including a thermoplastic resin shell and a thermally vaporizable blowing agent encapsulated therein. The organic base component has a melting point not higher than the expansion-initiation temperature of the heat-expandable microspheres and a melt flow rate (MFR, g/10 mm) higher than 50 and not higher than 2200. A ratio of the heat-expandable microspheres ranges from 30 to 80 wt % of the total weight of the heat-expandable microspheres and the organic base component. Also disclosed is a molding composition, a foamed molded article manufactured by molding the molding composition and a weathers tripping.


The present invention aims to provide an acrylic-fiber finish for carbon fiber production, which is prepared into a stable emulsion and applied to a carbon-fiber precursor to prevent gumming up of finish components in precursor production and carbon fiber fusing in baking process. The present invention provides an acrylic-fiber finish for carbon-fiber production comprising a modified silicone having a modifying group containing a nitrogen atom and an acidic phosphate ester represented by the following chemical formula (1).^(1) represents a C_(6-22) alkyl or alkenyl group, A represents a C_(2-4) alkylene group, and AO represents an oxyalkylene group, n represents a mole number of oxyalkylene group and is an integer ranging from 0 to 20, and each of a and b is an integer of 1 or 2 and meets the equation a + b = 3.


Patent
Matsumoto Yushi Seiyaku Co. | Date: 2014-12-15

A process for producing heat-expandable microspheres including a thermoplastic resin shell and a blowing agent encapsulated therein. The process includes the steps of dispersing a polymerizable component and the blowing agent in an aqueous dispersion medium having a pH of 7 or less and containing a fine-particle metal compound having a mean particle size ranging from 1.0 to 10 nm, and polymerizing the polymerizable component. The amount of the fine-particle metal compound ranges from 0.15 to 20 parts by weight to 100 parts by weight of the total amount of the polymerizable component and the blowing agent. Also disclosed are heat-expandable microspheres produced by dispersing a polymerizable component and a blowing agent in an aqueous dispersion medium containing colloidal silica and polymerizing the polymerizable component. Also disclosed is a composition containing the heat-expandable microspheres and a base component, a formed product, a slurry composition for use in forming a negative electrode of a lithium-ion secondary battery and a negative electrode.


Heat-expandable microspheres composed of a thermoplastic resin shell and a thermally-vaporizable blowing agent encapsulated therein, and having an average particle size ranging from 1 to 100 m. The amount of DMF-insoluble matter (G_(1)) and the amount of DMF-MEK-insoluble matter (G_(2)) constituting the heat-expandable microspheres satisfy 1.05


Patent
Matsumoto Yushi Seiyaku Co. | Date: 2014-08-25

Provided is a process for efficiently producing heat-expandable microspheres having high solvent resistance. The process produces the heat-expandable microspheres composed of a shell of a thermoplastic resin and a blowing agent encapsulated therein and vaporizable by heating, and includes the steps of preparing an aqueous suspension by dispersing an oily mixture containing a polymerizable component, the blowing agent, and a polymerization initiator containing, as an essential component, a peroxide A having a theoretical active oxygen content of at least 7.8%, and polymerizing the polymerizable component in the oily mixture.


An acrylic-fiber finish for carbon fiber production is prepared into a stable emulsion and applied to a carbon-fiber precursor to prevent gumming up of finish components in precursor production and carbon fiber fusing in baking process. The acrylic-fiber finish is used for carbon-fiber production and includes a modified silicone having a modifying group containing a nitrogen atom and an acidic phosphate ester represented by the following chemical formula (1). where R^(1 )represents a C_(6-22 )alkyl or alkenyl group, A represents a C_(2-4 )alkylene group, and AO represents an oxyalkylene group, n represents a mole number of oxyalkylene group and is an integer ranging from 0 to 20, and each of a and b is an integer of 1 or 2 and meets the equation a+b=3.

Loading Matsumoto Yushi Seiyaku Co. collaborators
Loading Matsumoto Yushi Seiyaku Co. collaborators