Austin, TEXAS, United States
Austin, TEXAS, United States

In mathematics, a matrix is a rectangular array of numbers, symbols, or expressions. The individual items in a matrix are called its elements or entries. An example of a matrix with six elements is Matrices of the same size can be added or subtracted element by element. The rule for matrix multiplication is more complicated, and two matrices can be multiplied only when the number of columns in the first equals the number of rows in the second. Wikipedia.

Time filter

Source Type

The present invention provides compositions comprising hyaluronan with high elasticity, as well as methods for improving joint function, reducing pain associated with joint function and treating osteoarthritis by introducing into a joint a therapeutically effective amount of a composition comprising hyaluronan with high elasticity.

The present invention provides methods for alleviating pain and discomfort associated with a dry eye condition; methods for alleviating pain and discomfort while minimizing at least one skin imperfection; and methods for alleviating pain and discomfort while facilitating wound healing. The methods involve administering to a subject in need thereof a composition comprising hyaluronan with high elasticity.

Materials and methods for treatment of pulmonary bulla are provided. A peptide comprising between about 7 amino acids and about 32 amino acids in a solution may be introduced to a target site. A hydrogel barrier may be provided at the target site in order to treat the pulmonary bulla.

A system and method of measuring the distance and determining the coordinate position of one or more target transceivers relative to a set of anchor transceivers with known locations is provided. The position of the target transceiver is determined by using a time-of-flight (TOF) initialization signal generated by the master anchor transceiver, a TOF response transmission generated by the target transceiver, calculation of the distances between the target transceiver and each anchor transceiver, and transmission of a TOF distance report by the master anchor transceiver. The system and method of the present invention permit the accurate locating of a target transceiver that is located outside the box.

Residue depth accurately measures burial and parameterizes local protein environment. Depth is the distance of any atom/residue to the closest bulk water. We consider the non-bulk waters to occupy cavities, whose volumes are determined using a Voronoi procedure. Our estimation of cavity sizes is statistically superior to estimates made by CASTp and VOIDOO, and on par with McVol over a data set of 40 cavities. Our calculated cavity volumes correlated best with the experimentally determined destabilization of 34 mutants from five proteins. Some of the cavities identified are capable of binding small molecule ligands. In this study, we have enhanced our depth-based predictions of binding sites by including evolutionary information. We have demonstrated that on a database (LigASite) of ∼200 proteins, we perform on par with ConCavity and better than MetaPocket 2.0. Our predictions, while less sensitive, are more specific and precise. Finally, we use depth (and other features) to predict pKas of GLU, ASP, LYS and HIS residues. Our results produce an average error of just <1 pH unit over 60 predictions. Our simple empirical method is statistically on par with two and superior to three other methods while inferior to only one. The DEPTH server ( is an ideal tool for rapid yet accurate structural analyses of protein structures.

Extensive evidence implicates the urokinase plasminogen activator receptor (uPAR) in tumor growth, invasion, and metastasis. Recent studies have substantiated the importance of the interaction between uPAR and the extracellular matrix protein vitronectin (VN) for the signaling activity of the receptor in vitro, however, the possible relevance of this interaction for the activity of uPAR in tumor growth and metastasis has not been assessed. We generated a panel of HEK293 cell lines expressing mouse uPAR (muPAR(WT)), an uPAR mutant specifically deficient in VN binding (muPAR(W32A)), and a truncation variant (muPAR(ΔD1)) deficient in both VN and uPA binding. In vitro cells expressing muPAR(WT) display increased cell adhesion, spreading, migration, and proliferation associated with increased p130Cas and MAPK signaling. Disruption of VN binding or ablation of both VN and uPA binding specifically abrogates these activities of uPAR. When xenografted into SCID (severe combined immunodeficiency) mice, the expression of muPAR(WT), but not muPAR(W32A) or muPAR(ΔD1), accelerates tumor development, demonstrating that VN binding is responsible for the tumor-promoting activity of uPAR in vivo. In an orthotopic xenograft model using MDA-MB-231 cells in RAG1(-/-)/VN(-/-) mice, we document that host deficiency in VN strongly impairs tumor formation. These 2 lines of in vivo experimentation independently demonstrate an important role for VN in tumor growth even if the uPAR dependence of the effect in the MDA-MB-231 model remains to be ascertained.

A method of tracking a medical device includes creating a patient profile; creating an operating profile with at least one identified surgical site; providing a tracking assembly including a reader with a scanner, a housing enclosing the scanner and a medical drape; placing a medical device having an identifier over the reader; scanning the identifier of the medical device to electronically record the medical device data; associating the scanned medical device data with the at least one surgical site; and using the medical device on a patient on the at least one surgical site.

Matrix and National Cancer Center | Date: 2016-04-12

Provided are methods and compositions useful in the diagnosis, treatment, and monitoring of osteosarcoma. Antisense to certain microRNA (miRNA) found to be associated with cancer stem cells (CSCs) or tumor-initiating cells (TICs) of osteosarcoma are useful to suppress tumor growth and metastasis, and prolong survival. Antisense oligonucleotides to miR-133a are synergistic in combination with standard chemotherapy such as cisplatin in the treatment of osteosarcoma.

Matrix | Date: 2016-08-19

An implant for the repair of bone and cartilage that includes a cell conductive zone that contains biopolymeric fibers and an osteoconductive zone that contains biopolymeric fibers and calcium-containing mineral particles. The biopolymeric fibers from one zone overlap with the fibers in the other zone forming a stable physical and mechanical integration of the two zones, thus conferring in vivo stability to the implant.

Agency: GTR | Branch: Innovate UK | Program: | Phase: Feasibility Study | Award Amount: 69.84K | Year: 2017

The food manufacturing sector has been producing multi-layered packaging since the 1970s. Multi-layered packaging offers a combination of properties that one polymer alone cannot provide (e.g. moisture, oxygen, light barrier, stiffness, clarity, gloss etc); typically comprised of layers of PET/PP/PE/PA. Over 40m tonnes p.a. of multilayered plastics are produced globally, of which the EU contributes 9.6m tonnes, with an expected growth of ~7%. However, due to the extreme difficulties in achieving effective separation of the multi-layered packaging into its constituent solid polymer components, there are no current technologies or operational processing plants for solid separation & recovery of the polymer fractions. As a consequence, multi-layered, flexible plastic waste is currently collected as a single waste stream & disposed of through landfill (at costs of £100/t), or incinerated (~£60/t); generating global economic losses of £2.4-4 billion. Disposal of such large volumes of plastic also generates great environmental concern, with an urgent need to develop effective separation technology. Our objective is to develop a novel recycling method to separate multilayered plastic packaging waste. Successful development of this technology will create the business opportunity to recycle this material, generating new revenues while reducing waste, landfill, energy & reducing annual CO2 emissions. Our novel process will not only ensure the sustainable supply of these plastics as raw materials via recycling but will also provide participating SMEs with the opportunity to derive an ongoing income.

Loading Matrix collaborators
Loading Matrix collaborators