Reykjavík, Iceland
Reykjavík, Iceland

Time filter

Source Type

Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: BIOTEC-6-2015 | Award Amount: 7.96M | Year: 2016

Biological sequence diversity in nowhere as apparent as in the vast sequence space of viral genomes. The Virus-X project will specifically explore the outer realms of this diversity by targeting the virosphere of selected microbial ecosystems and investigate the encoded functional variety of viral gene products. The project is driven by the expected large innovation value and unique properties of viral proteins, previously demonstrated by the many virally-derived DNA and RNA processing enzymes used in biotechnology. Concomitantly, the project will advance our understanding of important aspects of ecology in terms of viral diversity, ecosystem dynamics and virus-host interplay. Last but not least, due to the inherent challenges in gene annotation, functional assignments and other virus-specific technical obstacles of viral metagenomics, the Virus-X project specifically addresses these challenges using innovative measures in all parts of the discovery and analysis pipeline, from sampling difficult extreme biotopes, through sequencing and innovative bioinformatics to efficient production of enzymes for molecular biotechnology. Virus-X will advance the metagenomic tool-box significantly and our capabilities for future exploitation of viral biological diversity, the largest unexplored genetic reservoir on Earth.


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: SFS-14b-2015 | Award Amount: 521.83K | Year: 2016

It is acknowledged that historically anti-food fraud capability within Europe has not been consolidated and lacks the coordination and support structures available to those working in food safety. There are various initiatives underway to redress this balance e.g. DGSants Food Fraud network, DG Researchs FoodIntegrity project, as well as numerous national programmes and industry initiatives. One pivotal area that still needs to be addressed is bringing together national research funding bodies to facilitate the development of transnational research programmes. AUTHENT-NET will address this need by mobilising and coordinating relevant research budget holders in order to facilitate the eventual development of a transnational European funding vehicle that will allow Members States (MS) to jointly fund anti-fraud research. Authent-Net comprises a core group of 19 participants from 10 MS, 1 NGO and the US, who are either National research funding bodies; experts in food authenticity, and/or experts in transnational funding mechanisms. AUTHENT-NET will: 1) Bring together relevant MS R&D budget holders to coordinate inter-disciplinary research effort and build a cohesive and sustainable network 2) Undertake stocktaking of existing national research and assess against the international landscape 3) Establish transnational mechanisms and instruments for collating and exchanging information on food authenticity research 4) Develop a high level research and innovation strategy for transnational research and a rationale for a potential ERANET on food authenticity The two year project will have the following expected impacts: improved coordination and communication between relevant MS research budget holders; enhanced cognisance of existing national research; joint strategy for food fraud R&D; agreed priorities and capability to deliver transnational European research on food fraud.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: INFRAIA-1-2014-2015 | Award Amount: 10.23M | Year: 2015

The Europlanet 2020 Research Infrastructure (EPN2020-RI) will address key scientific and technological challenges facing modern planetary science by providing open access to state-of-the-art research data, models and facilities across the European Research Area. Its Transnational Access activities will provide access to world-leading laboratory facilities that simulate conditions found on planetary bodies as well as specific analogue field sites for Mars, Europa and Titan. Its Virtual Access activities will make available the diverse datasets and visualisation tools needed for comparing and understanding planetary environments in the Solar System and beyond. By providing the underpinning facilities that European planetary scientists need to conduct their research, EPN2020-RI will create cooperation and effective synergies between its different components: space exploration, ground-based observations, laboratory and field experiments, numerical modelling, and technology. EPN2020-RI builds on the foundations of successful FP6 and FP7 Europlanet programmes that established the Europlanet brand and built structures that will be used in the Networking Activities of EPN2020-RI to coordinate the European planetary science communitys research. It will disseminate its results to a wide range of stakeholders including industry, policy makers and, crucially, both the wider public and the next generation of researchers and opinion formers, now in education. As an Advanced Infrastructure we place particular emphasis on widening the participation of previously under-represented research communities and stakeholders. We will include new countries and Inclusiveness Member States, via workshops, team meetings, and personnel exchanges, to broaden/widen/expand and improve the scientific and innovation impact of the infrastructure. EPN2020-RI will therefore build a truly pan-European community that shares common goals, facilities, personnel, data and IP across national boundaries


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: BG-02-2015 | Award Amount: 5.20M | Year: 2016

The overall goal of ClimeFish is to help ensure that the increase in seafood production comes in areas and for species where there is a potential for sustainable growth, given the expected developments in climate, thus contributing to robust employment and sustainable development of rural and coastal communities. The underlying biological models are based on single species distribution and production, as well as multispecies interactions. Forecasting models will provide production scenarios that will serve as input to socio-economic analysis where risks and opportunities are identified, and early warning methodologies are developed. Strategies to mitigate risk and utilize opportunities will be identified in co-creation with stakeholders, and will serve to strengthen the scientific advice, to improve long term production planning and the policy making process. ClimeFish will address 3 production sectors through 16 case studies involving 25 species, and study the predicted effects of 3 pre-defined climate scenarios. For 7 of these cases ClimeFish will develop specific management plans (MPs) coherent with the ecosystem approach and based on a results-based scheme that will allow regulators, fishers and aquaculture operators to anticipate, prepare and adapt to climate change while minimizing economic losses and social consequences. A guideline for how to make climate-enabled MPs will be produced, and published as a low-level, voluntary European standard after a consensus-based open consultation process. As a container for the models, scenarios and MPs ClimeFish will develop the ClimeFish Decision Support Framework (DSF) which also contains the ClimeFish Decision Support System (DSS); a software application with capabilities for what-if analysis and visualization of scenarios. The presence of key international stakeholders in the project will ensure quality and relevance of the project outputs thus ensuring uptake and significant impact also after project end.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SFS-12-2014 | Award Amount: 8.82M | Year: 2015

Euromix aim to develop an experimentally verified, tiered strategy for the risk assessment of mixtures of multiple chemicals derived from multiple sources across different life stages. The project takes account of the gender dimension and balances the risk of chemicals present in foods against the benefits of those foods. Important concepts for this new strategy are prioritisation criteria for chemicals based on their exposure and hazard characteristics and evaluation of the role of mode of action in grouping chemicals into cumulative assessment groups. In-silico and in-vitro tools will be developed and verified against in-vivo experiments, with focus on four selected endpoints (liver, hormones, development and immunology) to provide a full proof-of-principle. The EuroMix project will result in an innovative platform of bioassays for mixture testing and refined categorisation of chemicals in cumulative assessment groups. New hazard and exposure models will be embedded in a model toolbox, made available for stakeholders through an openly accessible web-based platform. Access to the web-based tools will be facilitated by training. Criteria will be set and guidance will be written on how to use and implement the tiered test strategy. Dissemination and harmonisation of the approach within EU, Codex Alimentarius, and WHO will be achieved by involving a.o. WHO and US-EPA in the project and by the participation of experts playing a key role in helping establish international food safety policies. It is expected that the new mechanism-based strategy, the bioassay platform, the openly accessible web-based model toolbox, and clear guidance on a tiered hazard and exposure test and risk assessment strategy will boost innovation in the public and private sector, provide a sound scientific basis for managing risks to public health from chemical mixtures, ultimately reduce the use of laboratory animals, and support the global discussion of risk assessment policies for mixtures.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: BG-10-2014 | Award Amount: 5.28M | Year: 2015

The overall aim of PrimeFish is to improve the economic sustainability of European fisheries and aquaculture sectors. PrimeFish will gather data from individual production companies, industry and sales organisations, consumers and public sources. The data will be related to the competitiveness and economic performance of companies in the sector; this includes data on price development, supply chain relations, markets, consumer behaviour and successful product innovation. The large industry reference group will facilitate access to data on specific case studies. A data repository will be created, and PrimeFish will join the H2020 Open Research Data Pilot to ensure future open access to the data. The effectiveness of demand stimulation through health, label and certification claims will be evaluated and compared with actual consumer behaviour. PrimeFish will assess the non-market value associated with aquaculture and captured fisheries as well as the effectiveness of regulatory systems and thereby provide the basis for improved societal decision making in the future. The collected data will be used to verify models and develop prediction algorithms that will be implemented into a computerized decision support system (PrimeDSS). The PrimeDSS, together with the underlying data, models, algorithms, assumptions and accompanying user instructions will form the PrimeFish Decision Support Framework (PrimeDSF). The lead users, typically fishermen, aquaculture producers and production companies, will be able to use the PrimeDSF to improve understanding of the functioning of their markets and in setting strategic plans for future production and innovation which in turn will strengthen the long term viability of the European fisheries and aquaculture sectors. This will also benefit consumers, leading to more diversified European seafood products, enhanced added value, novel products and improved information on origin, certification and health claims.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SFS-09-2014 | Award Amount: 5.55M | Year: 2015

The European Union has committed to the gradual elimination of discarding. DiscardLess will help provide the knowledge, tools and technologies as well as the involvement of the stakeholders to achieve this. These will be integrated into Discard Mitigation Strategies (DMS) proposing cost-effective solutions at all stages of the seafood supply chain. The first focus is on preventing the unwanted catches from ever being caught. This will promote changes in gear using existing and innovative selectivity technology, and changes in fishing tactics based on fishers and scientists knowledge. The second focus is on making best use of the unavoidable unwanted catch. We will detail technical and marketing innovations from the deck, through the supply chain to the final market, including monitoring, traceability and valorization components. DiscardLess will evaluate the impacts of discarding on the marine environment, on the economy, and across the wider society. We will evaluate these impacts before, during and after the implementation of the landing obligation, allowing comparison between intentions and outcomes. Eliminating discards is as much a societal challenge as a fishery management one, so we will also evaluate stakeholders perception of discards. DiscardLess will describe the changes in management and the associated governance structures needed to cement the process. We will propose approaches to managing discards in a range of case study fisheries across Europe, encompassing differences in specific discarding issues. All these innovations will be combined in integrated Internet based interactive programs (DMS toolbox) that will help fishers to evaluate the present and future situation and to take a more qualified decision of how to adjust to the new regime. Also, we will disseminate the outcome of the project and maximize knowledge transfer across Europe through an educational environment teaching the next generation as well as more conventional routes.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: LCE-11-2015 | Award Amount: 6.00M | Year: 2016

MacroFuels aims to produce advanced biofuels from seaweed or macro-algae. The targeted biofuels are ethanol, butanol, furanics and biogas. The project will achieve a breakthrough in biofuel production from macroalgae by: Increasing the biomass supply by developing a rotating crop scheme for cultivation of seaweed, using native, highly productive brown, red and green seaweeds. Combined with the use of advanced textile substrates these breakthroughs will result in a year round biomass yield of 25 kg seaweeds (wet weight) per m2 per year harvested at 1000m2/hr; Improving the pre-treatment and storage of seaweed and to yield fermentable and convertible sugars at economically relevant concentrations (10-30%); Increasing the bio-ethanol production to economically viable concentrations of > 4%/l and; Increasing the bio-butanol yield to 15 g./l by developing novel fermenting organisms which metabolize all sugars at 90% efficiency for ethanol and butanol; Increasing the biogas yield to convert 90% of the available carbon in the residues by adapting the organisms to seaweed; Developing the thermochemical conversion of sugars to fuels from the mg. scale to the kg. scale; Performing an integral techno-economic, sustainability and risk assessment of the entire seaweed to biofuel chain. MacroFuels will develop technology for the production of fuels which are suitable as liquid fuels or precursor thereof for the heavy transport sector as well as potentially for the aviation sector. The technology will be taken from TRL3 to TRL 4/5. MacroFuels will expand the biomass available for the production of advanced biofuels. Seaweed does not need fresh water, arable land or fertilizers to grow, which provides environmental benefits, and in addition has a high carbon dioxide reduction potential as well as reduces the demand for natural resources on land. The technology offers many novel opportunities for employment along the entire value chain.


Grant
Agency: European Commission | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2014-ETN | Award Amount: 2.72M | Year: 2015

SAF21 is an interdisciplinary and intersectoral network that embeds the social scientists of the future into EU fisheries management systems. It trains experts in analysis of human social behaviour for the better management of socio-ecological complex systems such as fisheries. Behaviour of fishers is complex as trust building and norms acceptance influence compliance with fishing regulations in unpredictable ways. The desired behaviour of fishers is often different from the actual subsequent one as those involved adapt to and find ways around new regulatory regimes, often with catastrophic consequences on resources. Therefore, an integrated understanding of the fine mechanisms governing fishers behaviour in relation with the regulative processes is needed, to the benefit of decision makers, fishing industry and the environment alike. Academic research and training have insufficiently reflected this need. SAF21 will contribute to rectifying this by training researchers in using tools of the 21st century, e.g. computational sociology techniques, to analyse this topic from a multitude of angles: public understanding of fisheries, trust and norms, social and regulative norms, social marketing of fisheries norms, stakeholders interaction in different management systems and socio-economic resilience. This knowledge will initiate the development of innovative management strategies, especially when it comes to shifting to new regulatory regimes. The wide-ranging training envisaged will offer a structured doctoral training in academic and transferable skills in addition to highly intersectoral non-academic mobility opportunities. Thus, the SAF21 candidates will have the necessary skills and experience to cross disciplines and work sectors. SAF21 will provide researchers the opportunity to fulfill their scientific social responsibility at a higher level than conventional doctoral programs, by ensuring significant time and training for public engagement and outreach.


Grant
Agency: European Commission | Branch: H2020 | Program: BBI-RIA | Phase: BBI.VC3.R9-2015 | Award Amount: 4.46M | Year: 2016

MACRO CASCADE will prove the concept of the cascading marine macroalgal biorefinery i.e. a production platform that covers the whole technological chain for processing sustainable cultivated macro-algae biomass also known as seaweed - to highly processed value added products. The macro-algae biorefinery will be capable of processing multiple feedstocks, by deploying a range of mechanical, physicochemical and enzymatic pre-processing and fractionation techniques combined with chemical, enzymatic or microbial conversion refinery techniques for generation of a diversity of added-value products for industries within food, feed, cosmetics, pharmaceutical and fine chemicals. Algae based products for food, feed, cosmetics, pharmaceutical will be tested and documented for their bio-activities and health properties. The participation of two major industries and five SMEs demonstrate a significant commercial interest in the outcome MACRO CASCADE. The MACRO CASCADE approach contributes to the zero waste society as the left-over residuals from the biorefinery process can be used for fertilizers and bio-energy.

Loading Matis ohf. collaborators
Loading Matis ohf. collaborators