Brisbane, Australia
Brisbane, Australia

Time filter

Source Type

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics. "The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including biological and structural health monitoring sensors," explained Sameh Tawfick, an assistant professor of mechanical science and engineering at Illinois. "Aligned carbon nanotube sheets are suitable for a wide range of application spanning the micro- to the macro-scales including Micro-Electro-Mechanical Systems (MEMS), supercapacitor electrodes, electrical cables, artificial muscles, and multi-functional composites. "To our knowledge, this is the first study to apply the principles of fracture mechanics to design and study the toughness nano-architectured CNT textiles. The theoretical framework of fracture mechanics is shown to be very robust for a variety of linear and non-linear materials." Carbon nanotubes, which have been around since the early nineties, have been hailed as a "wonder material" for numerous nanotechnology applications, and rightly so. These tiny cylindrical structures made from wrapped graphene sheets have diameter of a few nanometers--about 1000 times thinner than a human hair, yet, a single carbon nanotube is stronger than steel and carbon fibers, more conductive than copper, and lighter than aluminum. However, it has proven really difficult to construct materials, such as fabrics or films that demonstrate these properties on centimeter or meter scales. The challenge stems from the difficulty of assembling and weaving CNTs since they are so small, and their geometry is very hard to control. "The study of the fracture energy of CNT textiles led us to design these extremely tough films," stated Yue Liang, a former graduate student with the Kinetic Materials Research group and lead author of the paper, "Tough Nano-Architectured Conductive Textile Made by Capillary Splicing of Carbon Nanotubes," appearing in Advanced Engineering Materials. To our knowledge, this is the first study of the fracture energy of CNT textiles. Beginning with catalyst deposited on a silicon oxide substrate, vertically aligned carbon nanotubes were synthesized via chemical vapor deposition in the form of parallel lines of 5?μm width, 10?μm length, and 20-60?μm heights. "The staggered catalyst pattern is inspired by the brick and mortar design motif commonly seen in tough natural materials such as bone, nacre, the glass sea sponge, and bamboo," Liang added. "Looking for ways to staple the CNTs together, we were inspired by the splicing process developed by ancient Egyptians 5,000 years ago to make linen textiles. We tried several mechanical approaches including micro-rolling and simple mechanical compression to simultaneously re-orient the nanotubes, then, finally, we used the self-driven capillary forces to staple the CNTs together." "This work combines careful synthesis, and delicate experimentation and modeling," Tawfick said. "Flexible electronics are subject to repeated bending and stretching, which could cause their mechanical failure. This new CNT textile, with simple flexible encapsulation in an elastomer matrix, can be used in smart textiles, smart skins, and a variety of flexible electronics. Owing to their extremely high toughness, they represent an attractive material, which can replace thin metal films to enhance device reliability." In addition to Liang and Tawfick, co-authors include David Sias and Ping Ju Chen.


News Article | April 21, 2017
Site: www.rdmag.com

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics. "The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including biological and structural health monitoring sensors," explained Sameh Tawfick, an assistant professor of mechanical science and engineering at Illinois. "Aligned carbon nanotube sheets are suitable for a wide range of application spanning the micro- to the macro-scales including Micro-Electro-Mechanical Systems (MEMS), supercapacitor electrodes, electrical cables, artificial muscles, and multi-functional composites. "To our knowledge, this is the first study to apply the principles of fracture mechanics to design and study the toughness nano-architectured CNT textiles. The theoretical framework of fracture mechanics is shown to be very robust for a variety of linear and non-linear materials." Carbon nanotubes, which have been around since the early nineties, have been hailed as a "wonder material" for numerous nanotechnology applications, and rightly so. These tiny cylindrical structures made from wrapped graphene sheets have diameter of a few nanometers--about 1000 times thinner than a human hair, yet, a single carbon nanotube is stronger than steel and carbon fibers, more conductive than copper, and lighter than aluminum. However, it has proven really difficult to construct materials, such as fabrics or films that demonstrate these properties on centimeter or meter scales. The challenge stems from the difficulty of assembling and weaving CNTs since they are so small, and their geometry is very hard to control. "The study of the fracture energy of CNT textiles led us to design these extremely tough films," stated Yue Liang, a former graduate student with the Kinetic Materials Research group and lead author of the paper, "Tough Nano-Architectured Conductive Textile Made by Capillary Splicing of Carbon Nanotubes," appearing in Advanced Engineering Materials. To our knowledge, this is the first study of the fracture energy of CNT textiles. Beginning with catalyst deposited on a silicon oxide substrate, vertically aligned carbon nanotubes were synthesized via chemical vapor deposition in the form of parallel lines of 5?μm width, 10?μm length, and 20-60?μm heights. "The staggered catalyst pattern is inspired by the brick and mortar design motif commonly seen in tough natural materials such as bone, nacre, the glass sea sponge, and bamboo," Liang added. "Looking for ways to staple the CNTs together, we were inspired by the splicing process developed by ancient Egyptians 5,000 years ago to make linen textiles. We tried several mechanical approaches including micro-rolling and simple mechanical compression to simultaneously re-orient the nanotubes, then, finally, we used the self-driven capillary forces to staple the CNTs together." "This work combines careful synthesis, and delicate experimentation and modeling," Tawfick said. "Flexible electronics are subject to repeated bending and stretching, which could cause their mechanical failure. This new CNT textile, with simple flexible encapsulation in an elastomer matrix, can be used in smart textiles, smart skins, and a variety of flexible electronics. Owing to their extremely high toughness, they represent an attractive material, which can replace thin metal films to enhance device reliability."


Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles, that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics. “The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including biological and structural health monitoring sensors,” explained Sameh Tawfick, an assistant professor of mechanical science and engineering at Illinois. “Aligned carbon nanotube sheets are suitable for a wide range of application spanning the micro- to the macro-scales including Micro-Electro-Mechanical Systems (MEMS), supercapacitor electrodes, electrical cables, artificial muscles, and multi-functional composites. “To our knowledge, this is the first study to apply the principles of fracture mechanics to design and study the toughness nano-architectured CNT textiles. The theoretical framework of fracture mechanics is shown to be very robust for a variety of linear and non-linear materials.” Carbon nanotubes, which have been around since the early nineties, have been hailed as a “wonder material” for numerous nanotechnology applications, and rightly so. These tiny cylindrical structures made from wrapped graphene sheets have diameter of a few nanometers—about 1000 times thinner than a human hair, yet, a single carbon nanotube is stronger than steel and carbon fibers, more conductive than copper, and lighter than aluminum. However, it has proven really difficult to construct materials, such as fabrics or films that demonstrate these properties on centimeter or meter scales. The challenge stems from the difficulty of assembling and weaving CNTs since they are so small, and their geometry is very hard to control. “The study of the fracture energy of CNT textiles led us to design these extremely tough films,” stated Yue Liang, a former graduate student with the Kinetic Materials Research group and lead author of the paper, “Tough Nano-Architectured Conductive Textile Made by Capillary Splicing of Carbon Nanotubes,” appearing in Advanced Engineering Materials. To our knowledge, this is the first study of the fracture energy of CNT textiles. Beginning with catalyst deposited on a silicon oxide substrate, vertically aligned carbon nanotubes were synthesized via chemical vapor deposition in the form of parallel lines of 5 µm width, 10 μm length, and 20–60 μm heights. “The staggered catalyst pattern is inspired by the brick and mortar design motif commonly seen in tough natural materials such as bone, nacre, the glass sea sponge, and bamboo,” Liang added. “Looking for ways to staple the CNTs together, we were inspired by the splicing process developed by ancient Egyptians 5,000 years ago to make linen textiles. We tried several mechanical approaches including micro-rolling and simple mechanical compression to simultaneously re-orient the nanotubes, then, finally, we used the self-driven capillary forces to staple the CNTs together.” “This work combines careful synthesis, and delicate experimentation and modeling,” Tawfick said. “Flexible electronics are subject to repeated bending and stretching, which could cause their mechanical failure. This new CNT textile, with simple flexible encapsulation in an elastomer matrix, can be used in smart textiles, smart skins, and a variety of flexible electronics. Owing to their extremely high toughness, they represent an attractive material, which can replace thin metal films to enhance device reliability.” In addition to Liang and Tawfick, co-authors include David Sias and Ping Ju Chen.


Control of light-matter interaction is central to fundamental phenomena and technologies such as photosynthesis, lasers, LEDs and solar cells. City College of New York researchers have now demonstrated a new class of artificial media called photonic hypercrystals that can control light-matter interaction in unprecedented ways. This could lead to such benefits as ultrafast LEDs for Li-Fi (a wireless technology that transmits high-speed data using visible light communication), enhanced absorption in solar cells and the development of single photon emitters for quantum information processing, said Vinod M. Menon, professor of physics in City College's Division of Science who led the research. Photonic crystals and metamaterials are two of the most well-known artificial materials used to manipulate light. However, they suffer from drawbacks such as bandwidth limitation and poor light emission. In their research, Menon and his team overcame these drawbacks by developing hypercrystals that take on the best of both photonic crystals and metamaterials and do even better. They demonstrated significant increase in both light emission rate and intensity from nanomaterials embedded inside the hypercrystals. The emergent properties of the hypercrystals arise from the unique combination of length scales of the features in the hypercrystal as well as the inherent properties of the nanoscale structures. The CCNY research appears in the latest issue of the Proceedings of the National Academy of Sciences. The team included graduate students Tal Galfsky and Jie Gu from Menon's research group in CCNY's Physics Department and Evgenii Narimanov (Purdue University), who first theoretically predicted the hypercrystals. The research was supported by the Army Research Office, the National Science Foundation - Division of Materials Research MRSEC program, and the Gordon and Betty Moore Foundation.


Abstract: Control of light-matter interaction is central to fundamental phenomena and technologies such as photosynthesis, lasers, LEDs and solar cells. City College of New York researchers have now demonstrated a new class of artificial media called photonic hypercrystals that can control light-matter interaction in unprecedented ways. New York, NY | Posted on May 5th, 2017 This could lead to such benefits as ultrafast LEDs for Li-Fi (a wireless technology that transmits high-speed data using visible light communication), enhanced absorption in solar cells and the development of single photon emitters for quantum information processing, said Vinod M. Menon, professor of physics in City College's Division of Science who led the research. Photonic crystals and metamaterials are two of the most well-known artificial materials used to manipulate light. However, they suffer from drawbacks such as bandwidth limitation and poor light emission. In their research, Menon and his team overcame these drawbacks by developing hypercrystals that take on the best of both photonic crystals and metamaterials and do even better. They demonstrated significant increase in both light emission rate and intensity from nanomaterials embedded inside the hypercrystals. The emergent properties of the hypercrystals arise from the unique combination of length scales of the features in the hypercrystal as well as the inherent properties of the nanoscale structures. The CCNY research appears in the latest issue of the Proceedings of the National Academy of Sciences. The team included graduate students Tal Galfsky and Jie Gu from Menon's research group in CCNY's Physics Department and Evgenii Narimanov (Purdue University), who first theoretically predicted the hypercrystals. The research was supported by the Army Research Office, the National Science Foundation - Division of Materials Research MRSEC program, and the Gordon and Betty Moore Foundation. For more information, please click If you have a comment, please us. Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.


This could lead to such benefits as ultrafast LEDs for Li-Fi (a wireless technology that transmits high-speed data using visible light communication), enhanced absorption in solar cells and the development of single photon emitters for quantum information processing, said Vinod M. Menon, professor of physics in City College's Division of Science who led the research. Photonic crystals and metamaterials are two of the most well-known artificial materials used to manipulate light. However, they suffer from drawbacks such as bandwidth limitation and poor light emission. In their research, Menon and his team overcame these drawbacks by developing hypercrystals that take on the best of both photonic crystals and metamaterials and do even better. They demonstrated significant increase in both light emission rate and intensity from nanomaterials embedded inside the hypercrystals. The emergent properties of the hypercrystals arise from the unique combination of length scales of the features in the hypercrystal as well as the inherent properties of the nanoscale structures. The CCNY research appears in the latest issue of the Proceedings of the National Academy of Sciences. The team included graduate students Tal Galfsky and Jie Gu from Menon's research group in CCNY's Physics Department and Evgenii Narimanov (Purdue University), who first theoretically predicted the hypercrystals. The research was supported by the Army Research Office, the National Science Foundation - Division of Materials Research MRSEC program, and the Gordon and Betty Moore Foundation. More information: Tal Galfsky et al. Photonic hypercrystals for control of light–matter interactions, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1702683114


News Article | April 25, 2017
Site: www.materialstoday.com

This is a schematic of an interpocket paired state, one of two topological superconducting states proposed in the latest work from the lab of Eun-Ah Kim, associate professor of physics at Cornell University. The material used is a monolayer transition metal dichalcogenide. Image: Eun-Ah Kim, Cornell University.The experimental realization of ultrathin graphene has ushered in a new age in materials research. What started with graphene has now evolved to encompass numerous related single-atom-thick materials, which have unusual properties due to their ultra-thinness. Among these materials are transition metal dichalcogenides (TMDs), which offer several key features not available in graphene and are emerging as next-generation semiconductors. Now, new research shows that TMDs could even realize topological superconductivity and thus provide a platform for quantum computing – the ultimate goal of a research group at Cornell University led by Eun-Ah Kim, associate professor of physics. "Our proposal is very realistic – that's why it's exciting," Kim said of her group's research. "We have a theoretical strategy to materialize a topological superconductor ... and that will be a step toward building a quantum computer. The history of superconductivity over the last 100 years has been led by accidental discoveries. We have a proposal that's sitting on firm principles. "Instead of hoping for a new material that has the properties you want, let's go after it with insight and design principle." Yi-Ting Hsu, a doctoral student in Kim’s group, is lead author of a new paper on this research in Nature Communications. Other team members include Kim group alumni Mark Fischer, now at ETH Zurich in Switzerland, and Abolhassan Vaezi, now at Stanford University. The group propose that TMDs' unusual properties favor two topological superconducting states, which if experimentally confirmed will open up possibilities for manipulating topological superconductors at temperatures near absolute zero. Kim identified hole-doped (positive charge-enhanced) single-layer TMDs as a promising candidate for topological superconductivity. She did this based on the known special locking between spin state and the kinetic energy of electrons (spin-valley locking) of single-layer TMDs, as well as the recent observations of superconductivity in electron-doped (negative charge-enhanced) single-layer TMDs. The group's goal is a superconductor that operates at around 1K (approximately -457°F), which could be sufficiently cooled with liquid helium to maintain quantum computing potential in a superconducting state. Theoretically, housing a quantum computer powerful enough to justify the power needed to keep the superconductor at 1K is not out of the question, Kim said. In fact, IBM already has a 7-qubit (quantum bit) computer that operates at less than 1K, which is available to the public through its IBM Quantum Experience. A quantum computer with approximately six times more qubits would fundamentally change computing, Kim said. "If you get to 40 qubits, that computing power will exceed any classical computers out there," she said. "And to house a 40-qubit quantum computer in cryogenic temperature is not that big a deal. It will be a revolution." Kim and her group are working with Debdeep Jena and Grace Xing of electrical and computer engineering, and Katja Nowack of physics, through an interdisciplinary research group seed grant from the Cornell Center for Materials Research (CCMR). Each group brings researchers from different departments together, with support from both the university and the US National Science Foundation's Materials Research Science and Engineering Centers program. "We're combining the engineering expertise of DJ and Grace, and expertise Katja has in mesoscopic systems and superconductors," Kim said. "It requires different expertise to come together to pursue this, and CCMR allows that." This story is adapted from material from Cornell University, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier. Link to original source.


News Article | May 8, 2017
Site: www.prnewswire.com

·         The 3D food printing market is expected to be valued at USD 425.0 million by 2025, growing at a CAGR of 54.75% between 2018 and 2025. ·         The market growth can be attributed to the increasing use of customized food in the meals by the consumers. ·         The market of 3D food printing is still in development phase; the players are showcasing their products and are expected to commercialize their products in a global market soon. ·         Carbohydrates expected to hold the largest size of the market during the forecast period" ·         Market in APAC is likely to grow at the highest rate during the forecast period" ·         The 3D food printing market in APAC is expected to grow at the highest rate during the forecast period. "3D food printing market expected to grow at a CAGR of 54.75% between 2018 and 2025" The 3D food printing market is expected to be valued at USD 425.0 million by 2025, growing at a CAGR of 54.75% between 2018 and 2025. The market growth can be attributed to the increasing use of customized food in the meals by the consumers. Also, the benefit of getting three-dimensionally printed food rich in specific nutrients is one of the major drivers for the 3D food printing market. The market of 3D food printing is still in development phase; the players are showcasing their products and are expected to commercialize their products in a global market soon. Several companies have showcased their 3D food printers and are also promoting their product through workshops, conferences, and live demos in collaboration with bakeries, confectionaries, and restaurants. One of the important benefits of the 3D food printing solutions is that it provides food customization options according to the preferences and needs of the individuals. "Carbohydrates expected to hold the largest size of the market during the forecast period" Carbohydrates are the type of nutrients, which are the most important source of energy for the human body. These are found in fruits, grains, vegetables, and milk products. Depending upon the requirement of carbohydrate in the body, 3D food printing could allow the consumers design their food. A person requiring high carbohydrate and low protein could set the ratio accordingly to get food of his choice, which in turn could revolutionize the way to control the nutrient intake. Also, most of the printers showcased by the companies currently print food rich in carbohydrates such as chocolates, candies, donuts, and pancakes. Thus, carbohydrates are expected to hold the largest size of the market. "Market in APAC is likely to grow at the highest rate during the forecast period" The 3D food printing market in APAC is expected to grow at the highest rate during the forecast period. Factors such as a high rate of aging and poverty, and lack of adequate amount of food to feed the population are likely to contribute to the fastest growth of the market in APAC during the forecast period. 3D printing allows preparation of easy to chew food, having the composition specific to the nutrient requirement of the patients. This is likely to help in feeding the old patients with the food rich in specific nutrients, based on their requirements. Breakdown of the profiles of primary participants: • By Company: Tier 1 = 10 %, Tier 2 = 30%, and Tier 3 = 60% • By Designation: C-Level Executives = 50%, Directors = 25%, and Others = 25% • By Region: North America = 60%, Europe = 20%, APAC = 10%, and RoW = 10% The major players profiled in this report are as follows: • 3D Systems (U.S.) • TNO (Netherlands) • Natural Machines (Spain) • Systems And Materials Research Corporation (U.S.) • By Flow (U.S.) • Print2taste GmbH (Germany) • Barilla (Italy) • CandyFab (U.S.) • Beehex (U.S.) • Choc Edge (U.K.) Research Coverage In this report, the 3D food printing market has been segmented on the basis of ingredient, vertical, and geography. The market based on ingredient has been segmented into dough, fruits and vegetables, proteins, sauces, dairy products, carbohydrates, and others. The 3D food printing market based on vertical comprises government, commercial, and residential verticals. The study also covers the forecast of the market sizes for four main regions—North America, Europe, APAC, and RoW. Reasons to buy the report The report would help the market leaders/new entrants in this market in the following ways. 1. This report segments the 3D food printing market comprehensively and provides the closest approximations of the overall market size and those of the subsegments across different verticals and regions. 2. The report would help stakeholders understand the pulse of the market and provide them with the information on key drivers, restraints, challenges, and opportunities for the market. 3. This report would help stakeholders understand their competitors better and gain more insights to enhance their position in the business. The competitive landscape section includes competitor ecosystem, new product launches and developments, partnerships, and mergers and acquisitions carried out in the market. Read the full report: http://www.reportlinker.com/p04877064/3D-Food-Printing-Market-by-Ingredient-Dough-Fruits-and-Vegetables-Proteins-Sauces-Dairy-Products-Carbohydrates-Vertical-Government-Commercial-and-Residential-and-Geography-Global-Forecast-to.html About Reportlinker ReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place. http://www.reportlinker.com __________________________ Contact Clare: clare@reportlinker.com US: (339)-368-6001 Intl: +1 339-368-6001 To view the original version on PR Newswire, visit:http://www.prnewswire.com/news-releases/3d-food-printing-market-expected-to-grow-at-a-cagr-of-5475-between-2018-and-2025-300453194.html


The coiled thread on a screw is among the 'chiral' structures' whose mirror image is different from the original. When reduced to the nanometer scale, these structures could have an important role in nanosensor technology. However, making a screw out of a straight wire is no small task, even in the macroscopic world. Making it on the nanoscale has previously used bottom-up methods that grow or assemble the structure in a gas or solution. But such approaches can be complicated, slow and expensive. Jun Wei from A*STAR's Singapore Institute of Manufacturing Technology and co-workers from the A*STAR Institute of Materials Research and Engineering, Nanyang Technological University and Nanjing Tech University in China, developed a simpler method that uses etching techniques to convert a straight nanowire into a screw. The team created 10-micrometer silver nanowires, 80 nanometers in diameter and with five sides. The structures were attached to a silicon substrate and then placed into a solution of silver nitride in ethylene glycol at 80 degrees Celsius for 20 minutes. The sample was then rinsed clean and the process repeated five times. When the resultant wires were imaged using a scanning transmission electron microscope the team observed smooth ridges and grooves reminiscent of screw threads. Interestingly, such a structure was not evident when a single-step etch was used. Etching usually works along specific crystallographic directions, leading to symmetric structures, so the team wanted to know how equivalent crystal facets could be etched in an anisotropic way. They propose that this unusual etching mode might begin with the creation of pits at the boundaries between the five crystallographic regions that make up the pentagonal nanowire. These pits merge at an angle, driven by the propensity to minimize the surface energy, and thus create ridges and grooves that spiral around the nanowire. "This selective etching is driven by a faster etching rate at some defect locations on the silver nanowire," says Wei. "Thus, we can convert a regular structure into non-symmetrical one." Such chiral nanostructures have a much larger surface area than a straight nanowire of similar size. This makes them potentially useful for sensing applications. "We next hope to use the nanoscrews in the fabrication of sensors and transparent conductors," says Wei. The A*STAR-affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technology and the Institute of Materials Research and Engineering. More information: Rachel Lee Siew Tan et al. Nanoscrews: Asymmetrical Etching of Silver Nanowires, Journal of the American Chemical Society (2016). DOI: 10.1021/jacs.6b06250


The transmission of light by electrochromic materials alters in response to brief bursts of electrical charge. They have optical uses ranging from the windows in Boeing 787-9 Dreamliners which change color at the touch of a button, to privacy glass around hotel bathrooms which switch between clear and opaque, to auto-dimming rear view car mirrors. To feasibly expand the potential uses for these materials, scientists must reduce the amount of electrical power needed to modulate their optical property changes, explains team leader Sing Yang Chiam from the A*STAR Institute of Materials Research and Engineering. To achieve this, "devices will require a greater surface area of contact for enhanced interaction", he says. "If you use nanoparticles for a large surface area, scattering makes for poor optical properties. Using a film with controlled cracks allows us to increase the surface area for better electrical efficiency, without sacrifice of the optical properties." Chiam's team's first step was to grow a thin NiO/Ni(OH)2 film on top of a regular array of pillars fixed to a rigid substrate. Such a structure introduced strain at pre-determined and regular points on the film. For example, spots with no support from any pillars were mechanically weak. The team found that briefly air-drying the newly-formed films was sufficient to trigger the crack formation at these locations. Further dehydration in a furnace caused the material to shrink and cause significant crack propagation. Electron microscopy images showed that the cracking pattern on the surface was so ordered that it looked "artificially squarish" (see image), Chiam says. An unprecedented level of fragmentation control at the submicron and nanometer scale had been achieved. Finally the team checked the electrochromic performance of the films using cyclic voltammetry measurements to measure their switching and optical properties. "The resultant structures yielded excellent electrochromic performance with high-coloration efficiency and stable cycling stability," Chaim confirms. "While the demonstrated enhancement is in electrochromics, I think the significance of the work is in the discovery of a method to order and control fragmentation at such a scale," he adds. Explore further: Understanding how hydration affects color-changing windows can boost their efficiency More information: L. Guo et al. Ordered fragmentation of oxide thin films at submicron scale, Nature Communications (2016). DOI: 10.1038/ncomms13148

Loading Materials Research collaborators
Loading Materials Research collaborators