Cambridge, MA, United States
Cambridge, MA, United States

The Massachusetts Institute of Technology is a private research university in Cambridge, Massachusetts. Founded in 1861 in response to the increasing industrialization of the United States, MIT adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. Researchers worked on computers, radar, and inertial guidance during World War II and the Cold War. Post-war defense research contributed to the rapid expansion of the faculty and campus under James Killian. The current 168-acre campus opened in 1916 and extends over 1 mile along the northern bank of the Charles River basin.MIT, with five schools and one college which contain a total of 32 departments, is traditionally known for research and education in the physical science and engineering, and more recently in biology, economics, linguistics, and management as well. The "Engineers" sponsor 31 sports, most teams of which compete in the NCAA Division III's New England Women's and Men's Athletic Conference; the Division I rowing programs compete as part of the EARC and EAWRC.MIT is often cited as among the world's top universities. As of 2014, 81 Nobel laureates, 52 National Medal of Science recipients, 45 Rhodes Scholars, 38 MacArthur Fellows, and 2 Fields Medalists have been affiliated with MIT. MIT has a strong entrepreneurial culture and the aggregated revenues of companies founded by MIT alumni would rank as the eleventh-largest economy in the world. Wikipedia.


Time filter

Source Type

Patent
Massachusetts Institute of Technology | Date: 2017-03-01

Embodiments related to cation-disordered lithium metal oxide compounds, their methods of manufacture, and use are described. In one embodiment, a cation-disordered lithium metal oxide includes LiMMO_(2) with a greater than 1. M includes at least one redox-active species with a first oxidation state n and an oxidation state n greater than n, and M is chosen such that a lithium-M oxide having a formula LiMO_(2) forms a cation-disordered rocksalt structure. M includes at least one charge-compensating species that has an oxidation state y that is greater than n.


Patent
The Broad Institute Inc., Massachusetts Institute of Technology and Harvard University | Date: 2017-03-22

The invention provides for systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are vectors and vector systems, some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for selecting specific cells by introducing precise mutations utilizing the CRISPR-Cas system.


Patent
Massachusetts Institute of Technology | Date: 2017-01-23

An implantable medical device is provided for controlled drug delivery within the bladder, or other body vesicle. The device may include at least one drug reservoir component comprising a drug; and a vesicle retention frame which comprises an elastic wire having a first end, an opposing second end, and an intermediate region therebetween, wherein the drug reservoir component is attached to the intermediate region of the vesicle retention frame. The retention frame prevents accidental voiding of the device from the bladder, and it preferably has a spring constant selected for the device to effectively stay in the bladder during urination while minimizing the irritation of the bladder.


Patent
Massachusetts Institute of Technology | Date: 2017-03-02

Cations that can precipitate from an aqueous composition to produce scaling are sequestered by adding a multi-dentate ligand to the aqueous composition. The multi-dentate ligand bonds with the cation to form a non-scaling ionic complex; and the aqueous solution with the ionic complex is used in a process that produces substantially pure water from the aqueous composition, where the cation, absent formation of the ionic complex, is subject to scaling. The pH of the aqueous composition (or a brine including components of the aqueous composition) is then reduced to release the cation from the multi-dentate ligand; and the multi-dentate ligand, after the cation is released, is then reused in a predominantly closed loop.


Patent
The Broad Institute Inc. and Massachusetts Institute of Technology | Date: 2017-02-10

The invention provides for delivery, engineering and optimization of systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are delivery systems and tissues or organ which are targeted as sites for delivery. Also provided are vectors and vector systems some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells to ensure enhanced specificity for target recognition and avoidance of toxicity and to edit or modify a target site in a genomic locus of interest to alter or improve the status of a disease or a condition.


Patent
Massachusetts Institute of Technology | Date: 2017-03-08

A method for monitoring periodic motions of one or more subjects uses signal reflections from the subjects. The method includes emitting a transmitted signal from a transmitting antenna and receiving a received signal at one or more receiving antennas. The received signal includes a combination of a number of reflections of the transmitted signal, at least some of which are associated with the subjects. The received signal, including the reflections, is processed to determine an estimate of a fundamental frequency of the periodic motions.


Patent
Massachusetts Institute of Technology | Date: 2017-01-04

In one aspect, a reference transmit signal is distributed to each of one or more transmit antennas, and delayed by multiple different times before transmission from the transmit antennas. The reference transmit signal (or a delayed version of the reference signal) is also used at each of the receive antennas to determine propagation (time of flight) times reflecting from bodies from each of the transmit antennas to the receive antenna. In another aspect, locations of multiple objects are determined by iteratively (a) determining a location of a body based on determined propagation times between multiple transmitter-receiver pairs, and (b) having determined a location, effectively removing the effect of reflections from that location from the remaining signals.


Patent
Massachusetts Institute of Technology | Date: 2017-07-05

A method of imaging a scene includes estimating multiple three-dimensional (3D) representations, each of which corresponds to a respective portion of the scene. Neighboring portions of the scene area are at least partially overlapping. Each 3D representation is estimated by illuminating the respective portion of the scene with a light burst including multiple light pulses, after which multiple point clouds are generated by detecting photons reflected or scattered from the respective portion of the scene using a focal plane array. Data points in the point clouds represent a distance between the focal plane array and a scene point in the respective portion of the scene. The 3D representation is then estimated based on the multiple point clouds via coincidence processing. The method then generates a 3D image of the scene based on the multiple 3D representations.


Ebert M.S.,Massachusetts Institute of Technology
Cell | Year: 2012

Biological systems use a variety of mechanisms to maintain their functions in the face of environmental and genetic perturbations. Increasing evidence suggests that, among their roles as posttranscriptional repressors of gene expression, microRNAs (miRNAs) help to confer robustness to biological processes by reinforcing transcriptional programs and attenuating aberrant transcripts, and they may in some network contexts help suppress random fluctuations in transcript copy number. These activities have important consequences for normal development and physiology, disease, and evolution. Here, we will discuss examples and principles of miRNAs that contribute to robustness in animal systems. Copyright © 2012 Elsevier Inc. All rights reserved.


Nocera D.G.,Massachusetts Institute of Technology
Accounts of Chemical Research | Year: 2012

To convert the energy of sunlight into chemical energy, the leaf splits water via the photosynthetic process to produce molecular oxygen and hydrogen, which is in a form of separated protons and electrons. The primary steps of natural photosynthesis involve the absorption of sunlight and its conversion into spatially separated electron-hole pairs. The holes of this wireless current are captured by the oxygen evolving complex (OEC) of photosystem II (PSII) to oxidize water to oxygen. The electrons and protons produced as a byproduct of the OEC reaction are captured by ferrodoxin of photosystem I. With the aid of ferrodoxin-NADP + reductase, they are used to produce hydrogen in the form of NADPH. For a synthetic material to realize the solar energy conversion function of the leaf, the light-absorbing material must capture a solar photon to generate a wireless current that is harnessed by catalysts, which drive the four electron/hole fuel-forming water-splitting reaction under benign conditions and under 1 sun (100 mW/cm 2) illumination.This Account describes the construction of an artificial leaf comprising earth-abundant elements by interfacing a triple junction, amorphous silicon photovoltaic with hydrogen- and oxygen-evolving catalysts made from a ternary alloy (NiMoZn) and a cobalt-phosphate cluster (Co-OEC), respectively. The latter captures the structural and functional attributes of the PSII-OEC. Similar to the PSII-OEC, the Co-OEC self-assembles upon oxidation of an earth-abundant metal ion from 2+ to 3+, may operate in natural water at room temperature, and is self-healing. The Co-OEC also activates H 2O by a proton-coupled electron transfer mechanism in which the Co-OEC is increased by four hole equivalents akin to the S-state pumping of the Kok cycle of PSII. X-ray absorption spectroscopy studies have established that the Co-OEC is a structural relative of Mn 3CaO 4-Mn cubane of the PSII-OEC, where Co replaces Mn and the cubane is extended in a corner-sharing, head-to-tail dimer.The ability to perform the oxygen-evolving reaction in water at neutral or near-neutral conditions has several consequences for the construction of the artificial leaf. The NiMoZn alloy may be used in place of Pt to generate hydrogen. To stabilize silicon in water, its surface is coated with a conducting metal oxide onto which the Co-OEC may be deposited. The net result is that immersing a triple-junction Si wafer coated with NiMoZn and Co-OEC in water and holding it up to sunlight can effect direct solar energy conversion via water splitting. By constructing a simple, stand-alone device composed of earth-abundant materials, the artificial leaf provides a means for an inexpensive and highly distributed solar-to-fuels system that employs low-cost systems engineering and manufacturing. Through this type of system, solar energy can become a viable energy supply to those in the non-legacy world. © 2012 American Chemical Society.

Loading Massachusetts Institute of Technology collaborators
Loading Massachusetts Institute of Technology collaborators