Lebanon, NH, United States
Lebanon, NH, United States

Time filter

Source Type

Patent
Stellenbosch University and Mascoma Corporation | Date: 2014-02-12

The present invention is directed to a yeast strain, or strains, secreting a full suite, or any subset of that full suite, of enzymes to hydrolyze corn starch, corn fiber, lignocellulose, (including enzymes that hydrolyze linkages in cellulose, hemicellulose, and between lignin and carbohydrates) and to utilize pentose sugars (xylose and arabinose). The invention is also directed to the set of proteins that are well expressed in yeast for each category of enzymatic activity. The resulting strain, or strains can be used to hydrolyze starch and cellulose simultaneously. The resulting strain, or strains can be also metabolically engineered to produce less glycerol and uptake acetate. The resulting strain, or strains can also be used to produce ethanol from granular starch without liquefaction. The resulting strain, or strains, can be further used to reduce the amount of external enzyme needed to hydrolyze a biomass feedstock during an Simultaneous Saccharification and Fermentation (SSF) process, or to increase the yield of ethanol during SSF at current saccharolytic enzyme loadings. In addition, multiple enzymes of the present invention can be co-expressed in cells of the invention to provide synergistic digestive action on biomass feedstock. In some aspects, host cells expressing different heterologous saccharolytic enzymes can also be co-cultured together and used to produce ethanol from biomass feedstock.


Patent
Mascoma Corporation and Dartmouth College | Date: 2012-11-30

The present invention provides for the manipulation of cofactor usage in a recombinant host cell to increase the formation of desirable products. In some embodiments, the invention provides for a recombinant microorganism comprising a mutation in one or more native enzymes such that their cofactor specificity is altered in such a way that overall cofactor usage in the cell is balanced for a specified pathway and there is an increase in a specific product formation within the cell. In some embodiments, endogenous enzymes are replaced by enzymes with an alternate cofactor specificity from a different species.


The present invention provides for the manipulation of carbon flux in a recombinant host cell to increase the formation of desirable products. The invention relates to cellulose-digesting organisms that have been genetically modified to allow the production of ethanol at a high yield by redirecting carbon flux at key steps of central metabolism.


One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce ethanol as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non- native gene encodes a first non-native enzyme involved in the metabolic production of ethanol.; Another aspect of the invention relates to a process for converting lignocellulosic biomass to ethanol, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.


Patent
Mascoma Corporation | Date: 2014-02-24

The present invention provides for heterologous expression of termite and termite-associated symbiont cellulases. The cellulases can, for example, be codon-optimized and expressed in yeast host cells, such as the yeast Saccharomyces cerevisiae. The cellulases can also be co-expressed in host cells with other cellulases. The expression in such host cells of the termite and termite-associated symbiont cellulases, and variants and combinations thereof, result in yeast with improved cellulosic activity. Thus, such genes and expression systems are useful for efficient and cost-effective consolidated bioprocessing systems.


One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce ethanol as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non-native gene encodes a first non-native enzyme involved in the metabolic production of ethanol. Another aspect of the invention relates to a process for converting lignocellulosic biomass to ethanol, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.


One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce ethanol as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non- native gene encodes a first non-native enzyme involved in the metabolic production of ethanol.; Another aspect of the invention relates to a process for converting lignocellulosic biomass to ethanol, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.


One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce ethanol as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non- native gene encodes a first non-native enzyme involved in the metabolic production of ethanol.; Another aspect of the invention relates to a process for converting lignocellulosic biomass to ethanol, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.


One aspect of the invention relates to a genetically modified thermophilic or mesophilic microorganism, wherein a first native gene is partially, substantially, or completely deleted, silenced, inactivated, or down-regulated, which first native gene encodes a first native enzyme involved in the metabolic production of an organic acid or a salt thereof, thereby increasing the native ability of said thermophilic or mesophilic microorganism to produce ethanol as a fermentation product. In certain embodiments, the aforementioned microorganism further comprises a first non-native gene, which first non- native gene encodes a first non-native enzyme involved in the metabolic production of ethanol.; Another aspect of the invention relates to a process for converting lignocellulosic biomass to ethanol, comprising contacting lignocellulosic biomass with a genetically modified thermophilic or mesophilic microorganism.


The present invention provides for novel metabolic pathways to detoxify biomass-derived acetate via metabolic conversion to ethanol, acetone, or isopropanol. More specifically, the invention provides for a recombinant microorganism comprising one or more native and/or heterologous enzymes that function in one or more first engineered metabolic pathways to achieve: (1) conversion of acetate to ethanol; (2) conversion of acetate to acetone; or (3) conversion of acetate to isopropanol; and one or more native and/or heterologous enzymes that function in one or more second engineered metabolic pathways to produce an electron donor used in the conversion of acetate to less inhibitory compounds; wherein the one or more native and/or heterologous enzymes is activated, upregulated, or downregulated.

Loading Mascoma Corporation collaborators
Loading Mascoma Corporation collaborators