Time filter

Source Type

Baker R.C.,Mars Global Food Safety Center | Ford R.M.,Mars Petcare | Helander M.E.,IBM | Marecki J.,IBM | And 2 more authors.
Journal of Food Protection

We propose a methodological framework for managing mycotoxin risks in the food processing industry. Mycotoxin contamination is a well-known threat to public health that has economic significance for the food processing industry; it is imperative to address mycotoxin risks holistically, at all points in the procurement, processing, and distribution pipeline, by tracking the relevant data, adopting best practices, and providing suitable adaptive controls. The proposed framework includes (i) an information and data repository, (ii) a collaborative infrastructure with analysis and simulation tools, (iii) standardized testing and acceptance sampling procedures, and (iv) processes that link the risk assessments and testing results to the sourcing, production, and product release steps. The implementation of suitable acceptance sampling protocols for mycotoxin testing is considered in some detail. Copyright ©, International Association for Food Protection Source

Koci J.,Kansas State University | Jeffery B.,Mars Global Food Safety Center | Riviere J.E.,Kansas State University | Monteiro-Riviere N.A.,Kansas State University
Toxicology in Vitro

In vitro models are useful tools to initially assess the toxicological safety hazards of food ingredients. Toxicities of cinnamaldehyde (CINA), cinnamon bark oil, lemongrass oil (LGO), thymol, thyme oil (TO), clove leaf oil, eugenol, ginger root extract (GRE), citric acid, guanosine monophosphate, inosine monophosphate and sorbose (SORB) were assessed in canine renal proximal tubule cells (CPTC) using viability assay and renal injury markers. At LC50, CINA was the most toxic (0.012mg/ml), while SORB the least toxic (>100mg/ml). Toxicities (LC50) of positive controls were as follows: 4-aminophenol (0.15mg/ml in CPTC and 0.083mg/ml in human PTC), neomycin (28.6mg/ml in CPTC and 27.1mg/ml in human PTC). XYL displayed lowest cytotoxic potency (LC50=82.7mg/ml in CPTC). In vivo renal injury markers in CPTC were not significantly different from controls. The LGO toxicity mechanism was analyzed using qPCR and electron microscopy. Out of 370 genes, 57 genes (15.4%) were significantly up (34, 9.1%) or down (23, 6.2%) regulated, with the most upregulated gene gsta3 (~200-fold) and the most affected pathway being oxidative stress. LGO induced damage of mitochondria, phospholipid accumulation and lack of a brush border. Viability assays along with mechanistic studies in the CPTC model may serve as a valuable in vitro toxicity screening tool. © 2014 Elsevier Ltd. Source

Zhang L.W.,Kansas State University | Koci J.,Kansas State University | Jeffery B.,Mars Global Food Safety Center | Riviere J.E.,Kansas State University | Monteiro-Riviere N.A.,Kansas State University
Food and Chemical Toxicology

This research aimed to develop in vitro methods to assess hazard of canine food ingredients. Canine hepatocytes were harvested and cell viability of clove-leaf oil (CLO), eugenol (EUG), lemongrass oil (LGO), guanosine monophosphate (GMP), inosine monophosphate (IMP), sorbose, ginger-root extract (GRE), cinnamon-bark oil (CBO), cinnamaldehyde (CINA), thymol oil (TO), thymol (THYM), and citric acid were assessed with positive controls: acetaminophen (APAP), aflatoxin B1 and xylitol. Molecular Toxicology PathwayFinder array (MTPF) analyzed toxicity mechanisms for LGO. LC50 for APAP was similar among human (3.45), rat (2.35), dog (4.26 mg/ml). Aflatoxin B1 had an LC50 of 4.43 (human), 5.78 (rat) and 6.05 (dog) μg/ml; xylitol did not decrease viability. LC50 of CLO (0.185 ± 0.075(SD)), EUG (0.165 ± 0.112), LGO (0.220 ± 0.012), GRE (1.54 ± 0.31) mg/ml; GMP (166.03 ± 41.83), GMP + IMP (208.67 ± 15.27) mM; CBO (0.08 ± 0.03), CINA (0.11 ± 0.01), TO (0.21 ± 0.03), THYM (0.05 ± 0.01), citric acid (1.58 ± 0.08) mg/ml, while sorbose was non-toxic. LGO induced upregulation of 16 and down-regulation of 24 genes, which CYP and heat shock most affected. These results suggest that in vitro assays such as this may be useful for hazard assessment of food ingredients for altered hepatic function. © 2015 Elsevier Ltd. Source

Kass P.H.,University of California at Davis | Weng H.-Y.,University of California at Davis | Weng H.-Y.,Purdue University | Gaona M.A.L.,University of California at Davis | And 4 more authors.

In an effort to recognize and address communicable and point-source epidemics in dog and cat populations, this project created a near real-time syndromic surveillance system devoted to companion animal health in the United States. With over 150 million owned pets in the US, the development of such a system is timely in light of previous epidemics due to various causes that were only recognized in retrospect. The goal of this study was to develop epidemiologic and statistical methods for veterinary hospital-based surveillance, and to demonstrate its efficacy by detection of simulated foodborne outbreaks using a database of over 700 hospitals. Data transfer protocols were established via a secure file transfer protocol site, and a data repository was constructed predominantly utilizing open-source software. The daily proportion of patients with a given clinical or laboratory finding was contrasted with an equivalent average proportion from a historical comparison period, allowing construction of the proportionate diagnostic outcome ratio and its confidence interval for recognizing aberrant heath events. A five-tiered alert system was used to facilitate daily assessment of almost 2,000 statistical analyses. Two simulated outbreak scenarios were created by independent experts, blinded to study investigators, and embedded in the 2010 medical records. Both outbreaks were detected almost immediately by the alert system, accurately detecting species affected using relevant clinical and laboratory findings, and ages involved. Besides demonstrating proof-in-concept of using veterinary hospital databases to detect aberrant events in space and time, this research can be extended to conducting post-detection etiologic investigations utilizing exposure information in the medical record. © 2016 Kass et al. Source

Lambertini E.,University of Maryland University College | Buchanan R.L.,University of Maryland University College | Narrod C.,University of Maryland University College | Ford R.M.,Mars Petcare U.S. | And 2 more authors.
International Journal of Food Microbiology

Recent Salmonella outbreaks associated with dry pet foods and treats highlight the importance of these foods as previously overlooked exposure vehicles for both pets and humans. In the last decade efforts have been made to raise the safety of this class of products, for instance by upgrading production equipment, cleaning protocols, and finished product testing. However, no comprehensive or quantitative risk profile is available for pet foods, thus limiting the ability to establish safety standards and assess the effectiveness of current and proposed Salmonella control measures. This study sought to develop an ingredients-to-consumer quantitative microbial exposure assessment model to: 1) estimate pet and human exposure to Salmonella via dry pet food, and 2) assess the impact of industry and household-level mitigation strategies on exposure. Data on prevalence and concentration of Salmonella in pet food ingredients, production process parameters, bacterial ecology, and contact transfer in the household were obtained through literature review, industry data, and targeted research. A probabilistic Monte Carlo modeling framework was developed to simulate the production process and basic household exposure routes. Under the range of assumptions adopted in this model, human exposure due to handling pet food is null to minimal if contamination occurs exclusively before extrusion. Exposure increases considerably if recontamination occurs post-extrusion during coating with fat, although mean ingested doses remain modest even at high fat contamination levels, due to the low percent of fat in the finished product. Exposure is highly variable, with the distribution of doses ingested by adult pet owners spanning 3. Log CFU per exposure event. Child exposure due to ingestion of 1. g of pet food leads to significantly higher doses than adult doses associated with handling the food. Recontamination after extrusion and coating, e.g., via dust or equipment surfaces, may also lead to exposure due to the absence of pathogen reduction steps after extrusion or at consumer households. Exposure is potentially highest when Salmonella is transferred to human food that is left at growth-promoting conditions. This model can be applied to evaluate the impact of alternative Salmonella control measures during production, risk communication to consumers, and regulatory standards. © 2015. Source

Discover hidden collaborations