Maroochy Research Station

Nambour, Australia

Maroochy Research Station

Nambour, Australia
SEARCH FILTERS
Time filter
Source Type

Le D.P.,University of Queensland | Smith M.,Maroochy Research Station | Hudler G.W.,Cornell University | Aitken E.,University of Queensland
Crop Protection | Year: 2014

Ginger is considered by many people to be the outstanding member among 1400 other species in the family Zingiberaceae. Not only it is a valuable spice used by cooks throughout the world to impart unique flavour to their dishes but it also has a long track record in some Chinese and Indian cultures for treating common human ailments such as colds and headaches. Ginger has recently attracted considerable attention for its anti-inflammatory, antibacterial and antifungal properties. However, ginger as a crop is also susceptible to at least 24 different plant pathogens, including viruses, bacteria, fungi and nematodes. Of these, Pythium spp. (within the kingdom Stramenopila, phyllum Oomycota) are of most concern because various species can cause rotting and yield loss on ginger at any of the growth stages including during postharvest storage. Pythium gracile was the first species in the genus to be reported as a ginger pathogen, causing Pythium soft rot disease in India in 1907. Thereafter, numerous other Pythium spp. have been recorded from ginger growing regions throughout the world. Today, 15 Pythium species have been implicated as pathogens of the soft rot disease. Because accurate identification of a pathogen is the cornerstone of effective disease management programs, this review will focus on how to detect, identify and control Pythium spp. in general, with special emphasis on Pythium spp. associated with soft rot on ginger. © 2014 Elsevier Ltd.


Akinsanmi O.A.,University of Queensland | Topp B.,Maroochy Research Station | Drenth A.,University of Queensland
Euphytica | Year: 2012

Pseudocercospora macadamiae Beilharz, Mayers and Pascoe infects macadamia fruit via stomata causing husk spot disease. Information on the variability of fruit stomatal abundance, its association with diseased fruit pericarps (sticktights) that are retained in the tree canopy, and its influence on the husk spot intensity (incidence, severity and lesion number) among macadamia genotypes is lacking. We examined a total of 230 macadamia trees comprising 19 cultivars, 56 wild germplasm accessions and 40 breeding progeny, for the prevalence of sticktights and husk spot intensity over three production seasons. We observed a strong association between the prevalence of sticktights and disease intensity indicating its usefulness as a predictor of husk spot and as a useful phenotypic trait for husk spot resistance selection in breeding programmes. Similarly, stomatal abundance varied among macadamia genotypes, and a significant linear relationship (P < 0.001; 93%) was observed between fruit stomatal abundance and husk spot for all the macadamia genotypes analysed, confirming the utility of that trait for disease resistance screening. The genotypes were grouped into disease resistance groups. Correlations between fruit stomatal abundance, disease intensity and prevalence of sticktights revealed that the numbers of sticktights, and relative stomatal abundance were the main factors influencing the intensity of husk spot among macadamia genotypes. This is the first comprehensive study of natural variation of stomatal abundance in Macadamia species that reveals genetic variation, and provides relevant relationships with disease intensity and the prevalence of sticktights. The phenotypic plant traits indentified in this study may serve as selection tools for disease resistance screening in macadamia breeding programmes. © 2012 Springer Science+Business Media B.V.


Le D.P.,University of Queensland | Smith M.K.,Maroochy Research Station | Aitken E.A.B.,University of Queensland
Australasian Plant Pathology | Year: 2016

In Australia, Pythium soft rot (PSR) outbreaks caused by P. myriotylum were reported in 2009 and since then this disease has remained as a major concern for the ginger industry. From 2012 to 2015, a number of Pythium spp. were isolated from ginger rhizomes and soil from farms affected by PSR disease and assessed for their pathogenicity on ginger. In this study, 11 distinct Pythium spp. were recovered from ginger farms in Queensland, Australia and species identification and confirmation were based on morphology, growth rate and ITS sequences. These Pythium spp. when tested showed different levels of aggressiveness on excised ginger rhizome. P. aphanidemartum, P. deliense, P. myriotylum, P. splendens, P. spinosum and P. ultimum were the most pathogenic when assessed in vitro on an array of plant species. However, P. myriotylum was the only pathogen, which was capable of inducing PSR symptoms on ginger at a temperature range from 20 to 35 °C. Whereas, P. aphanidermatum only attacked and induced PSR on ginger at 30 to 35 °C in pot trials. This is the first report of P. aphanidermatum inducing PSR of ginger in Australia at high temperatures. Only P. oligandrum and P. perplexum, which had been recovered only from soils and not plant tissue, appeared non-pathogenic in all assays. © 2016, Australasian Plant Pathology Society Inc.


Smith M.K.,Maroochy Research Station | Langdon P.W.,Maroochy Research Station | Pegg K.G.,DAFF | Daniells J.W.,South Johnstone Research Station
Scientia Horticulturae | Year: 2014

Six tetraploid hybrids from Fundación Hondureña de Investigación Agrícola (FHIA) were evaluated in Australia over a five year period. They included three AAAA hybrids (FHIA-02, FHIA-17 and FHIA-23) and three AAAB hybrids (FHIA-01, FHIA-18 and SH-3640.10) and they were compared with industry standards, 'Williams' (AAA, Cavendish subgroup) and 'Lady Finger' (AAB, Pome subgroup). They were screened for their resistance to Fusarium wilt race 1 and subtropical race 4 caused by the pathogen Fusarium oxysporum f.sp. cubense and they were also grown for several cycles on farms not infested with Fusarium wilt to record their agronomic characteristics. The AAAB hybrids, all derived from female parent 'Prata Anã' (AAB, Pome subgroup) were the most resistant to both races of Fusarium wilt and were very productive in the subtropics. They were significantly more productive than 'Lady Finger', which was susceptible to both races of Fusarium wilt. The AAAA hybrids, with the exception of FHIA-02 which was very susceptible to Fusarium wilt and displayed the poorest agronomic traits of the six hybrids, produced bunch weights as good as Cavendish but were significantly slower to cycle. FHIA-17 and FHIA-23, both derived from the female parent 'Highgate' (AAA, Gros Michel subgroup), were also significantly more resistant to Fusarium wilt than 'Gros Michel', while FHIA-17 demonstrated a level of resistance similar to 'Williams' and FHIA-23 was intermediate between 'Lady Finger' and 'Williams'. © 2014.


Smith M.K.,Maroochy Research Station | Smith J.P.,Maroochy Research Station | Stirling G.R.,Biological Crop Protection
Soil and Tillage Research | Year: 2011

Ginger (Zingiber officinale) production is facing increasing disease and pest pressure and declining yield with continuing intensive cultivation practices. A four year experiment was established in south-eastern Queensland on a red ferrosol that had a long (>60 years) history of ginger farming. Minimal tillage and organic amendments were compared with conventional practice that involved frequent tillage and soil fumigation using 1,3-dichloropropene (Telone®). Ginger crops were grown in the second and fourth year of the experiment, following an annual rotation with different cover crops including oats (Avena sativa), Brassica spp., soybean (Glycine max) and forage sorghum (Sorghum bicolour X S. sudanese). A pasture ley of Pangola grass (Digitaria eriantha subsp. pentzii) provided a treatment continuum from major to minor disruption in the soil's physical fertility and biological communities, and was therefore only planted to ginger in the fourth year of the experiment. Ginger seed-pieces (sections of the rhizome used for planting) were planted into both tilled and untilled beds using a double disc opener on a specially designed ginger planter. Rhizome yield in the final year was greatest (74.2t/ha) and losses to pathogens (Pythium myriotylum and Fusarium oxysporum f. sp. zingiberi) minimal (7.0%) in the pasture ley that had been cultivated prior to planting ginger. Furthermore, the minimum-tilled cover cropped treatment, which likewise had been cultivated prior to planting ginger, yielded well (62.0t/ha), with few losses (5.0%) from rhizome rots. Conversely the fumigated treatment had the highest losses (35.9%) due to Pythium Soft Rot and lowest yields (20.2t/ha). Minimum-tilled plantings of ginger, however, resulted in poor yields (30.9-43.1t/ha) but had acceptable levels of disease. © 2011 Elsevier B.V.


Bebawi F.F.,Tropical Weeds Research Center | Campbell S.D.,Tropical Weeds Research Center | Mayer R.J.,Maroochy Research Station
Rangeland Journal | Year: 2015

Understanding the reproductive biology of Calotropis procera (Aiton) W.T. Aiton, an invasive weed of northern Australia, is critical for development of effective management strategies. Two experiments are reported on. In Experiment 1 seed longevity of C. procera seeds, exposed to different soil type (clay and river loam), pasture cover (present and absent) and burial depth (0, 2.5, 10 and 20cm) treatments were examined. In Experiment 2 time to reach reproductive maturity was studied. The latter experiment included its sister species, C. gigantea (L.) W.T. Aiton, for comparison and two separate seed lots were tested in 2009 and 2012 to determine if exposure to different environmental conditions would influence persistence. Both seed lots demonstrated a rapid decline in viability over the first 3 months and declined to zero between 15 and 24 months after burial. In Experiment 1, longevity appeared to be most influenced by rainfall patterns and associated soil moisture, burial depth and soil type, but not the level of pasture cover. Experiment 2 showed that both C. procera and C. gigantea plants could flower once they had reached an average height of 85cm. However, they differed significantly in terms of basal diameter at first flowering with C. gigantea significantly smaller (31mm) than C. procera (45mm). On average, C. gigantea flowered earlier (125 days vs 190 days) and set seed earlier (359 days vs 412 days) than C. procera. These results suggest that, under similar conditions to those that prevailed in the present studies, land managers could potentially achieve effective control of patches of C. procera in 2 years if they are able to kill all original plants and treat seedling regrowth frequently enough to prevent it reaching reproductive maturity. This suggested control strategy is based on the proviso that replenishment of the seed bank is not occurring from external sources (e.g. wind and water dispersal). © Australian Rangeland Society 2015.


Herrington M.E.,Maroochy Research Station | Herrington M.E.,University of Queensland | Wegener M.,University of Queensland | Hardner C.,University of Queensland | And 2 more authors.
Agricultural Systems | Year: 2012

In Queensland the subtropical strawberry (Fragaria×. ananassa) breeding program aims to combine traits into novel genotypes that increase production efficiency. The contribution of individual plant traits to cost and income under subtropical Queensland conditions was investigated, with the overall goal of improving the profitability of the industry through the release of new strawberry cultivars. The study involved specifying the production and marketing system using three cultivars of strawberry that are currently widely grown annually in southeast Queensland, developing methods to assess the economic impact of changes to the system, and identifying plant traits that influence outcomes from the system. From May through September P (price; $punnet -1), V (monthly mass; tonne of fruit on the market) and M (calendar month; i.e. May=5) were found to be related (r 2=0.92) by the function (±SE) P=4.741(±0.469)-0.001630(±0.0005)V-0.226(±0.102)M using data from 2006 to 2010 for the Brisbane central market. Both income and cost elements in the gross margin were subject to sensitivity analysis.'Harvesting' and 'Handling/Packing' 'Groups' of 'Activities' were the major contributors to variable costs (each >20%) in the gross margin analysis. Within the 'Harvesting Group', the 'Picking Activity' contributed most (>80%) with the trait 'display of fruit' having the greatest (33%) influence on the cost of the 'Picking Activity'. Within the 'Handling/Packing Group', the 'Packing Activity' contributed 50% of costs with the traits 'fruit shape', 'fruit size variation' and 'resistance to bruising' having the greatest (12-62%) influence on the cost of the 'Packing Activity'. Non-plant items (e.g. carton purchases) made up the other 50% of the costs within the 'Handling/Packing Group'. When any of the individual traits in the 'Harvesting' and 'Handling/Packing' groups were changed by one unit (on a 1-9 scale) the gross margin changed by up to 1%. Increasing yield increased the gross margin to a maximum (15% above present) at 1320gplant -1 (94% above present). A 10% redistribution of total yield from September to May increased the gross margin by 23%. Increasing fruit size increased gross margin: a 75% increase in fruit size (to ≈30g) produced a 22% increase in the gross margin. The modified gross margin analysis developed in this study allowed simultaneous estimation of the gross margin for the producer and gross value of the industry. These parameters sometimes move in opposite directions. © 2011 Elsevier Ltd.


Le D.P.,University of Queensland | Smith M.K.,Maroochy Research Station | Aitken E.A.B.,University of Queensland
Crop Protection | Year: 2015

Pythium soft rot (PSR) of ginger caused by a number of Pythium species is of the most concern worldwide. In Australia, PSR outbreaks associated with Pythium myriotylum was recorded in 2007. Our recent pathogenicity tests in Petri dishes conducted on ginger rhizomes and pot trials on ginger plants showed that Pythiogeton (Py.) ramosum, an uncommon studied oomycete in Pythiaceae, was also pathogenic to ginger at high temperature (30-35°C). Ginger sticks excised from the rhizomes were colonised by Py. ramosum which caused soft rot and browning lesions. Ginger plants inoculated with Py. ramosum showed initial symptoms of wilting and leave yellowing, which were indistinguishable from those of Pythium soft rot of ginger, at 10 days after inoculation. In addition, morphological and phylogenetic studies indicated that isolates of Py. ramosum were quite variable and our isolates obtained from soft rot ginger were divided into two groups based on these variations. This is also for the first time Py. ramosum is reported as a pathogen on ginger at high temperatures. © 2015 Elsevier Ltd.


Lewis T.,University of The Sunshine Coast | Lewis T.,Griffith University | De Faveri J.,Maroochy Research Station
International Journal of Wildland Fire | Year: 2012

Wildfire represents a major risk to pine plantations. This risk is particularly great for young plantations (generally less than 10m in height) where prescribed fire cannot be used to manipulate fuel biomass, and where flammable grasses are abundant in the understorey. We report results from a replicated field experiment designed to determine the effects of two rates of glyphosate (450gL-1) application, two extents of application (inter-row only and inter-row and row) with applications being applied once or twice, on understorey fine fuel biomass, fuel structure and composition in south-east Queensland, Australia. Two herbicide applications (∼9 months apart) were more effective than a once-off treatment for reducing standing biomass, grass continuity, grass height, percentage grass dry weight and the density of shrubs. In addition, the 6-Lha-1 rate of application was more effective than the 3-Lha-1 rate of application in periodically reducing grass continuity and shrub density in the inter-rows and in reducing standing biomass in the tree rows, and application in the inter-rows and rows significantly reduced shrub density relative to the inter-row-only application. Herbicide treatment in the inter-rows and rows is likely to be useful for managing fuels before prescribed fire in young pine plantations because such treatment minimised tree scorch height during prescribed burns. Further, herbicide treatments had no adverse effects on plantation trees, and in some cases tree growth was enhanced by treatments. However, the effectiveness of herbicide treatments in reducing the risk of tree damage or mortality under wildfire conditions remains untested. Journal compilation © IAWF 2012.


Bebawi F.F.,Tropical Weeds Research Center | Campbell S.D.,Tropical Weeds Research Center | Mayer R.J.,Maroochy Research Station
Rangeland Journal | Year: 2016

Chinee apple (Ziziphus mauritiana Lam.) is a thorny tree that is invading tropical woodlands of northern Australia. The present study reports three experiments related to the seed dynamics of chinee apple. Experiment 1 and 2 investigated persistence of seed lots under different soil types (clay and river loam), levels of pasture cover (present or absent) and burial depths (0, 2.5, 10 and 20cm). Experiment 3 determined the germination response of chinee apple seeds to a range of alternating day/night temperatures (11/6°C up to 52/40°C). In the longevity experiments (Expts 1 and 2), burial depth, soil type and burial duration significantly affected viability. Burial depth had the greatest influence, with surface located seeds generally persisting for longer than those buried below ground. Even so, no viable seeds remained after 18 and 24 months in the first and second experiment, respectively. In Expt 3 seeds of chinee apple germinated under a wide range of alternating day/night temperatures ranging from 16/12°C to 47 /36°C. Optimal germination (77%) occurred at 33/27°C and no seeds germinated at either of the lowest (11/6°C) or highest (52/40°C) temperature regimes tested. These findings indicated that chinee apple has the potential to expand its current distribution to cooler areas of Australia. Control practices need to be undertaken for at least two years to exhaust the seed bank. © Australian Rangeland Society 2016.

Loading Maroochy Research Station collaborators
Loading Maroochy Research Station collaborators