Time filter

Source Type

Rosevelt C.,California State University, Monterey Bay | Los Huertos M.,California State University, Monterey Bay | Garza C.,California State University, Monterey Bay | Nevins H.M.,Marine Wildlife Veterinary Care and Research Center | Nevins H.M.,University of California at Davis
Marine Pollution Bulletin

Monitoring beach litter is essential for reducing ecological threats towards humans and wildlife. In Monterey Bay, CA information on seasonal and spatial patterns is understudied. Central California's coastal managers require reliable information on debris abundance, distribution, and type, to support policy aimed at reducing litter. We developed a survey method that allowed for trained citizen scientists to quantify the types and abundance of beach litter. Sampling occurred from July 2009-June 2010. Litter abundance ranged from 0.03 to 17.1itemsm-2 . Using a mixed model approach, we found season and location have the greatest effect on litter abundance. Styrofoam, the most numerically abundant item, made up 41% of the total amount of litter. Unexpected items included fertilizer pellets. The results of this study provide a baseline on the types and abundance of litter on the central coast and have directly supported policy banning Styrofoam take out containers from local municipalities. © 2013 Elsevier Ltd. Source

Vanwormer E.,University of California at Davis | Conrad P.A.,University of California at Davis | Miller M.A.,University of California at Davis | Miller M.A.,Marine Wildlife Veterinary Care and Research Center | And 3 more authors.

Environmental transmission of Toxoplasma gondii, a global zoonotic parasite, adversely impacts human and animal health. Toxoplasma is a significant cause of mortality in threatened Southern sea otters, which serve as sentinels for disease threats to people and animals in coastal environments. As wild and domestic felids are the only recognized hosts capable of shedding Toxoplasma oocysts into the environment, otter infection suggests land-to-sea pathogen transmission. To assess relative contributions to terrestrial parasite loading, we evaluated infection and shedding among managed and unmanaged feral domestic cats, mountain lions, and bobcats in coastal California, USA. Infection prevalence differed among sympatric felids, with a significantly lower prevalence for managed feral cats (17%) than mountain lions, bobcats, or unmanaged feral cats subsisting on wild prey (73-81%). A geographic hotspot of infection in felids was identified near Monterey Bay, bordering a high-risk site for otter infection. Increased odds of oocyst shedding were detected in bobcats and unmanaged feral cats. Due to their large populations, pet and feral domestic cats likely contribute more oocysts to lands bordering the sea otter range than native wild felids. Continued coastal development may influence felid numbers and distribution, increase terrestrial pathogens in freshwater runoff, and alter disease dynamics at the human-animal-environment interface. © 2013 International Association for Ecology and Health. Source

VanWormer E.,University of California at Davis | Miller M.A.,University of California at Davis | Miller M.A.,Marine Wildlife Veterinary Care and Research Center | Conrad P.A.,University of California at Davis | And 4 more authors.
PLoS Neglected Tropical Diseases

Background:Environmental transmission of the zoonotic parasite Toxoplasma gondii, which is shed only by felids, poses risks to human and animal health in temperate and tropical ecosystems. Atypical T. gondii genotypes have been linked to severe disease in people and the threatened population of California sea otters. To investigate land-to-sea parasite transmission, we screened 373 carnivores (feral domestic cats, mountain lions, bobcats, foxes, and coyotes) for T. gondii infection and examined the distribution of genotypes in 85 infected animals sampled near the sea otter range.Methodology/Principal Findings:Nested PCR-RFLP analyses and direct DNA sequencing at six independent polymorphic genetic loci (B1, SAG1, SAG3, GRA6, L358, and Apico) were used to characterize T. gondii strains in infected animals. Strains consistent with Type X, a novel genotype previously identified in over 70% of infected sea otters and four terrestrial wild carnivores along the California coast, were detected in all sampled species, including domestic cats. However, odds of Type X infection were 14 times higher (95% CI: 1.3-148.6) for wild felids than feral domestic cats. Type X infection was also linked to undeveloped lands (OR = 22, 95% CI: 2.3-250.7). A spatial cluster of terrestrial Type II infection (P = 0.04) was identified in developed lands bordering an area of increased risk for sea otter Type II infection. Two spatial clusters of animals infected with strains consistent with Type X (P≤0.01) were detected in less developed landscapes.Conclusions:Differences in T. gondii genotype prevalence among domestic and wild felids, as well as the spatial distribution of genotypes, suggest co-existing domestic and wild T. gondii transmission cycles that likely overlap at the interface of developed and undeveloped lands. Anthropogenic development driving contact between these cycles may increase atypical T. gondii genotypes in domestic cats and facilitate transmission of potentially more pathogenic genotypes to humans, domestic animals, and wildlife. Source

Miller M.A.,Marine Wildlife Veterinary Care and Research Center | Byrne B.A.,University of California at Davis | Jang S.S.,University of California at Davis | Dodd E.M.,Marine Wildlife Veterinary Care and Research Center | And 7 more authors.
Veterinary Research

Although protected for nearly a century, California's sea otters have been slow to recover, in part due to exposure to fecally-associated protozoal pathogens like Toxoplasma gondii and Sarcocystis neurona. However, potential impacts from exposure to fecal bacteria have not been systematically explored. Using selective media, we examined feces from live and dead sea otters from California for specific enteric bacterial pathogens (Campylobacter, Salmonella, Clostridium perfringens, C. difficile and Escherichia coli O157:H7), and pathogens endemic to the marine environment (Vibrio cholerae, V. parahaemolyticus and Plesiomonas shigelloides). We evaluated statistical associations between detection of these pathogens in otter feces and demographic or environmental risk factors for otter exposure, and found that dead otters were more likely to test positive for C. perfringens, Campylobacter and V. parahaemolyticus than were live otters. Otters from more urbanized coastlines and areas with high freshwater runoff (near outflows of rivers or streams) were more likely to test positive for one or more of these bacterial pathogens. Other risk factors for bacterial detection in otters included male gender and fecal samples collected during the rainy season when surface runoff is maximal. Similar risk factors were reported in prior studies of pathogen exposure for California otters and their invertebrate prey, suggesting that land-sea transfer and/or facilitation of pathogen survival in degraded coastal marine habitat may be impacting sea otter recovery. Because otters and humans share many of the same foods, our findings may also have implications for human health. © 2009 INRA EDP Sciences. Source

Counihan-Edgar K.L.,University of California at Davis | Gill V.A.,U.S. Fish and Wildlife Service | Doroff A.M.,Kachemak Bay Research Reserve | Miller W.A.,University of California at Davis | And 7 more authors.
Journal of Clinical Microbiology

Pulsed-field gel electrophoresis (PFGE) was used to type 128 Streptococcus infantarius subsp. coli isolates from sea otters and mussels. Six SmaI PFGE groups were detected, with one predominant group representing 57% of the isolates collected over a wide geographic region. Several sea otter and mussel isolates were highly related, suggesting that an environmental infection source is possible. Copyright © 2012 American Society for Microbiology. All Rights Reserved. Source

Discover hidden collaborations