Time filter

Source Type

Zhong F.,CAS Wuhan Institute of Hydrobiology | Zhong F.,Marine Fisheries Research Institute of Jiangsu Province | Liang W.,CAS Wuhan Institute of Hydrobiology | Yu T.,CAS Wuhan Institute of Hydrobiology | And 4 more authors.
Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering | Year: 2011

The nitrogen (N) balance for aquaculture is an important aspect, especially in China, and it is attributed to the eutrophication in many freshwater bodies. In recent years, constructed wetlands (CWs) have been widely used in wastewater treatment and ecosystem restoration. A recirculating aquaculture system (RAS) consisting of CWs and 4 fish ponds was set up in Wuhan, China. Channel catfish (Ictalurus punctatus) fingerlings were fed for satiation daily for 168 days with 2 diets containing 5.49 % and 6.53 % nitrogen, respectively. The objectives of this study were to investigate the N budget in the RAS, and try to find out the feasibility of controlling N accumulation in the fish pond. It is expected that the study can provide a mass balance for the fate of N in the eco-friendly treatment system to avoid eutrophication. The results showed that the removal rates of ammonia (NH+ 4-N), sum of nitrate nitrite (NO - X-N), and total nitrogen (TN) by the CWs were 20-55%, 38-84 % and 39-57 %, respectively. Denitrification in the CWs was the main pathway of nitrogen loss (41.67 %). Nitrogen accumulation in pond water and sediment accounted for 3.39 % and 12.65 % of total nitrogen loss, respectively. The nitrogen removal efficiency and budget showed that the CW could be used to control excessive nitrogen accumulation in fish ponds. From the viewpoint of the nitrogen pollution control, the RAS combined with the constructed wetland can be applied to ensure the sustainable development for aquaculture. Copyright © 2011 Taylor & Francis Group, LLC.

Wu J.,Tongji University | Dai Y.,Tongji University | Rui S.,Tongji University | Cui N.,Tongji University | And 2 more authors.
Ecotoxicology | Year: 2015

Sediment anoxia generally results from intense organic enrichment and is a limiting factor in the restoration of vegetation in eutrophic waters. To investigate the effect of sediment anoxia on a typical pollution-tolerant submerged macrophyte species, Hydrilla verticillata, and acclimation mechanisms in the plant, a gradient of sediment anoxia was simulated with additions of sucrose to the sediment, which can stimulate increased concentrations of total nitrogen, NH4 + and Fe in pore water. H. verticillata growth was significantly affected by highly anoxic conditions, as indicated by reduced total biomass in the 0.5 and 1 % sucrose treatments. However, slight anoxia (0.1 % sucrose addition) promoted growth, and the shoot biomass was 22.64 % higher than in the control. In addition to morphologic alterations, H. verticillata showed physiological acclimations to anoxia, including increased anaerobic respiration and changes in carbon and nitrogen metabolism in roots. The soluble protein and soluble carbohydrate contents in roots of the 1 % treatment were both significantly higher compared with those in the control. The increase in alcohol dehydrogenase activity and pyruvate content in the roots suggested that H. verticillata has a well-developed capacity for anaerobic fermentation. This study suggests that highly anoxic sediments inhibit the growth of H. verticillata and the species has a degree of tolerance to anoxic conditions. Further in situ investigations should be conducted on the interactions between sediment conditions and macrophytes to comprehensively evaluate the roles of sediment in the restoration of vegetation in eutrophic waters. © 2015, Springer Science+Business Media New York.

Wu J.,Tongji University | Yang L.,Tongji University | Zhong F.,Marine Fisheries Research Institute of Jiangsu Province | Cheng S.,Tongji University
Environmental Science and Pollution Research | Year: 2014

Compared to traditional chemical or physical treatments, phytoremediation has proved to be a cost-effective and environmentally sound alternative for remediation of contaminated dredged sediment. A field study was conducted in a sediment disposal site predominantly colonized by Typha angustifolia under different sediment moisture conditions to estimate the phytoremediation effects of dredged sediment. The moisture content was 37.30 % and 48.27 % in aerated and waterlogged sediment, respectively. Total nitrogen (TN) content was higher in the waterlogged sediment than in the aerated sediment. The total Cd contents were lower in aerated sediment, which was mainly resulted from the lower exchangeable fraction of Cd. The bioaccumulation of P, Cu and Pb in T. angustifolia was promoted by waterlogging, and the belowground tissue concentrations and accumulation factors (AFs) of Cu were higher than that of other metals, which can be explained by that Cu is an essential micronutrient for plants. Consistent with many previous studies, T. angustifolia showed higher metal levels in roots than in above-ground tissues at both the sediment conditions. Due to the improved biomass produced in the aerated sediment, the removals of nutrients and the metals by plant harvest were higher from aerated sediment than from waterlogged sediment. It was indicated that maintaining the dredged sediment aerated can avoid release risk and plant uptake of metals, while the opposite management option can promote phytoextraction of these contaminants. © 2014, Springer-Verlag Berlin Heidelberg.

Tang D.,Nanjing University | Zou X.,Nanjing University | Liu X.,CAS South China Sea Institute of Oceanography | Liu P.,Marine Fisheries Research Institute of Jiangsu Province | And 3 more authors.
Ecological Indicators | Year: 2015

The main objective of ecosystem health management is to preserve the capacity of ecosystems to respond to disturbances and future changes. We proposed a set of ecological indicators for coastal ecosystem health assessment using physical stressors such as total suspended matter, chemical stressors including nutrients and heavy metal pollutants, community structure metrics including species richness, diversity and evenness, and ecosystem level eco-exergy indicators. The results of our case study indicate that the health status of the Jiangsu coastal ecosystem is limited by environmental stressors and factors that affect the community species diversity. The health status of nektonic and benthic communities is reflected by water quality and sediment physicochemical properties, respectively. The results of our case study demonstrate that the integrated ecological health indicator system can provide a comprehensive assessment that corresponds with the current health of coastal ecosystems and a reliable theoretical basis for regional coastal management. © 2014 Elsevier Ltd.

Zhong F.,CAS Wuhan Institute of Hydrobiology | Zhong F.,Marine Fisheries Research Institute of Jiangsu Province | Gao Y.,CAS Wuhan Institute of Hydrobiology | Yu T.,CAS Wuhan Institute of Hydrobiology | And 6 more authors.
Water Research | Year: 2011

An exploratory study on the management of undesirable cyanobacteria blooms with respect to off-flavor problems using an integrated vertical-flow constructed wetland (CW) was performed at a small commercial-scale channel catfish farm from 2004 to 2007. The results of the three-year experiment indicated that water treatment by the CW could reduce the possibility of dominance by undesirable cyanobacteria species that often cause off-flavor problems. A detailed investigation in 2007, showed that the concentrations of geosmin, MIB (2-methylisoborneol), and β-cyclocitral in the water of the recirculating pond (4.3ngL -1, U.D. (undetected) and 0.2ngL -1, respectively) treated by the CW were significantly lower than those in the control pond (152.6ngL -1, 63.3ngL -1 and 254.8ngL -1, respectively). In addition, the relationships among the cyanobacteria species, the off-flavor compounds and ten environmental variables were explored by canonical correspondence analysis (CCA). The results showed that Oscillatoria sp., Oscillatoria kawamurae and Microcystis aeruginosa were the main sources of off-flavor compounds in the catfish ponds. The successful manipulation of undesirable cyanobacteria species potentially resulted in lower concentrations of odorous compounds in the water of the recirculating pond. An investigation of the concentrations of geosmin and MIB in catfish fillets showed that the levels of odorous compounds were below the OTC (odor threshold concentration) values in the recirculating pond but were above the OTC values from July to October in the control pond. Water recycling by the CW could potentially be one of the best management practices to control off-flavor occurrences in aquaculture. © 2011 Elsevier Ltd.

Discover hidden collaborations