Entity

Time filter

Source Type

Plymouth, United Kingdom

The Marine Biological Association of the United Kingdom is a learned society with a scientific laboratory that undertakes research in marine biology. The organisation was founded in 1884 and has been based in Plymouth since the Citadel Hill Laboratory was opened on 30 June 1888. It has a world-leading reputation for marine biological research, with some twelve Nobel laureates having been or being associated with it over the course of their career. Among them, A. V. Hill received the Nobel Prize in Physiology or Medicine in 1922 "for his discovery relating to the production of heat in the muscle". The discovery of the mechanism of nerve impulses in animals was made at the Laboratory in Plymouth by Sir Alan Lloyd Hodgkin and Sir Andrew Huxley, work for which they were awarded the Nobel Prize for Physiology or Medicine in 1963. The MBA publishes the Journal of the Marine Biological Association of the United Kingdom. The MBA is also home to the National Marine Biological Library, whose collections cover the marine biological science, and curates the Historical Collections.In 2013, the MBA was granted a Royal Charter in recognition of the MBA's scientific preëminence in its field. Wikipedia.


Smale D.A.,Marine Biological Association of The United Kingdom
Proceedings. Biological sciences / The Royal Society | Year: 2013

Species distributions have shifted in response to global warming in all major ecosystems on the Earth. Despite cogent evidence for these changes, the underlying mechanisms are poorly understood and currently imply gradual shifts. Yet there is an increasing appreciation of the role of discrete events in driving ecological change. We show how a marine heat wave (HW) eliminated a prominent habitat-forming seaweed, Scytothalia dorycarpa, at its warm distribution limit, causing a range contraction of approximately 100 km (approx. 5% of its global distribution). Seawater temperatures during the HW exceeded the seaweed's physiological threshold and caused extirpation of marginal populations, which are unlikely to recover owing to life-history traits and oceanographic processes. Scytothalia dorycarpa is an important canopy-forming seaweed in temperate Australia, and loss of the species at its range edge has caused structural changes at the community level and is likely to have ecosystem-level implications. We show that extreme warming events, which are increasing in magnitude and frequency, can force step-wise changes in species distributions in marine ecosystems. As such, return times of these events have major implications for projections of species distributions and ecosystem structure, which have typically been based on gradual warming trends.


Cunliffe M.,Marine Biological Association of The United Kingdom
ISME Journal | Year: 2011

The Marine Roseobacter Clade (MRC) is a numerically and biogeochemically significant component of the bacterioplankton. Annotation of multiple MRC genomes has revealed that an abundance of carbon monoxide dehydrogenase (CODH) cox genes are present, subsequently implying a role for the MRC in marine CO cycling. The cox genes fall into two distinct forms based on sequence analysis of the coxL gene; forms I and II. The two forms are unevenly distributed across the MRC genomes. Most (18/29) of the MRC genomes contain only the putative form II coxL gene. Only 10 of the 29 MRC genomes analysed have both the putative form II and the definitive form I coxL. None have only the form I coxL. Genes previously shown to be required for post-translational maturation of the form I CODH enzyme are absent from the MRC genomes containing only form II. Subsequent analyses of a subset of nine MRC strains revealed that only MRC strains with both coxL forms are able to oxidise CO. © 2011 International Society for Microbial Ecology All rights reserved.


Brownlee C.,Marine Biological Association of The United Kingdom
Current Biology | Year: 2013

The Venus flytrap digests and absorbs its prey, but how does it coordinate digestion and absorption to maximise the efficiency of this highly evolved mechanism? A new study that combines direct recordings from cells within the trap along with molecular characterization of nutrient transport reveals a complex and coordinated suite of mechanisms that underlie this elegant process. © 2013 Elsevier Ltd.


Burkhardt P.,Marine Biological Association of The United Kingdom
Journal of Experimental Biology | Year: 2015

The origin of neurons was a key event in evolution, allowing metazoans to evolve rapid behavioral responses to environmental cues. Reconstructing the origin of synaptic proteins promises to reveal their ancestral functions and might shed light on the evolution of the first neuron-like cells in metazoans. By analyzing the genomes of diverse metazoans and their closest relatives, the evolutionary history of diverse presynaptic and postsynaptic proteins has been reconstructed. These analyses revealed that choanoflagellates, the closest relatives of metazoans, possess diverse synaptic protein homologs. Recent studies have now begun to investigate their ancestral functions. A primordial neurosecretory apparatus in choanoflagellates was identified and it was found that the mechanism, by which presynaptic proteins required for secretion of neurotransmitters interact, is conserved in choanoflagellates and metazoans. Moreover, studies on the postsynaptic protein homolog Homer revealed unexpected localization patterns in choanoflagellates and new binding partners, both which are conserved in metazoans. These findings demonstrate that the study of choanoflagellates can uncover ancient and previously undescribed functions of synaptic proteins. © 2015. Published by The Company of Biologists Ltd.


Cunliffe M.,Marine Biological Association of The United Kingdom
Applied and Environmental Microbiology | Year: 2013

Ruegeria pomeroyi expresses carbon monoxide (CO) dehydrogenase and oxidizes CO; however, CO has no effect on growth. Nuclear magnetic resonance (NMR) spectra showed that CO has no effect on cellular metabolite profiles. These data support ecosystem models proposing that, even though bacterioplankton CO oxidation is biogeochemically significant, it has an insignificant effect on bacterioplankton productivity. © 2013, American Society for Microbiology.

Discover hidden collaborations