Entity

Time filter

Source Type

Plymouth, United Kingdom

The Marine Biological Association of the United Kingdom is a learned society with a scientific laboratory that undertakes research in marine biology. The organisation was founded in 1884 and has been based in Plymouth since the Citadel Hill Laboratory was opened on 30 June 1888. It has a world-leading reputation for marine biological research, with some twelve Nobel laureates having been or being associated with it over the course of their career. Among them, A. V. Hill received the Nobel Prize in Physiology or Medicine in 1922 "for his discovery relating to the production of heat in the muscle". The discovery of the mechanism of nerve impulses in animals was made at the Laboratory in Plymouth by Sir Alan Lloyd Hodgkin and Sir Andrew Huxley, work for which they were awarded the Nobel Prize for Physiology or Medicine in 1963. The MBA publishes the Journal of the Marine Biological Association of the United Kingdom. The MBA is also home to the National Marine Biological Library, whose collections cover the marine biological science, and curates the Historical Collections.In 2013, the MBA was granted a Royal Charter in recognition of the MBA's scientific preëminence in its field. Wikipedia.


Cunliffe M.,Marine Biological Association of The United Kingdom
ISME Journal | Year: 2011

The Marine Roseobacter Clade (MRC) is a numerically and biogeochemically significant component of the bacterioplankton. Annotation of multiple MRC genomes has revealed that an abundance of carbon monoxide dehydrogenase (CODH) cox genes are present, subsequently implying a role for the MRC in marine CO cycling. The cox genes fall into two distinct forms based on sequence analysis of the coxL gene; forms I and II. The two forms are unevenly distributed across the MRC genomes. Most (18/29) of the MRC genomes contain only the putative form II coxL gene. Only 10 of the 29 MRC genomes analysed have both the putative form II and the definitive form I coxL. None have only the form I coxL. Genes previously shown to be required for post-translational maturation of the form I CODH enzyme are absent from the MRC genomes containing only form II. Subsequent analyses of a subset of nine MRC strains revealed that only MRC strains with both coxL forms are able to oxidise CO. © 2011 International Society for Microbial Ecology All rights reserved. Source


Taylor J.D.,Marine Biological Association of The United Kingdom
ISME Journal | Year: 2016

Mycoplankton have so far been a neglected component of pelagic marine ecosystems, having been poorly studied relative to other plankton groups. Currently, there is a lack of understanding of how mycoplankton diversity changes through time, and the identity of controlling environmental drivers. Using Fungi-specific high-throughput sequencing and quantitative PCR analysis of plankton DNA samples collected over 6 years from the coastal biodiversity time series site Station L4 situated off Plymouth (UK), we have assessed changes in the temporal variability of mycoplankton diversity and abundance in relation to co-occurring environmental variables. Mycoplankton diversity at Station L4 was dominated by Ascomycota, Basidiomycota and Chytridiomycota, with several orders within these phyla frequently abundant and dominant in multiple years. Repeating interannual mycoplankton blooms were linked to potential controlling environmental drivers, including nitrogen availability and temperature. Specific relationships between mycoplankton and other plankton groups were also identified, with seasonal chytrid blooms matching diatom blooms in consecutive years. Mycoplankton α-diversity was greatest during periods of reduced salinity at Station L4, indicative of riverine input to the ecosystem. Mycoplankton abundance also increased during periods of reduced salinity, and when potential substrate availability was increased, including particulate organic matter. This study has identified possible controlling environmental drivers of mycoplankton diversity and abundance in a coastal sea ecosystem, and therefore sheds new light on the biology and ecology of an enigmatic marine plankton group. Mycoplankton have several potential functional roles, including saprotrophs and parasites, that should now be considered within the consensus view of pelagic ecosystem functioning and services.The ISME Journal advance online publication, 4 March 2016; doi:10.1038/ismej.2016.24. © 2016 International Society for Microbial Ecology Source


Collingridge P.W.,Marine Biological Association of The United Kingdom | Kelly S.,University of Oxford
BMC Bioinformatics | Year: 2012

Background: The generation of multiple sequence alignments (MSAs) is a crucial step for many bioinformatic analyses. Thus improving MSA accuracy and identifying potential errors in MSAs is important for a wide range of post-genomic research. We present a novel method called MergeAlign which constructs consensus MSAs from multiple independent MSAs and assigns an alignment precision score to each column.Results: Using conventional benchmark tests we demonstrate that on average MergeAlign MSAs are more accurate than MSAs generated using any single matrix of sequence substitution. We show that MergeAlign column scores are related to alignment precision and hence provide an ab initio method of estimating alignment precision in the absence of curated reference MSAs. Using two novel and independent alignment performance tests that utilise a large set of orthologous gene families we demonstrate that increasing MSA performance leads to an increase in the performance of downstream phylogenetic analyses.Conclusion: Using multiple tests of alignment performance we demonstrate that this novel method has broad general application in biological research. © 2012 Collingridge and Kelly; licensee BioMed Central Ltd. Source


Brownlee C.,Marine Biological Association of The United Kingdom
Current Biology | Year: 2013

The Venus flytrap digests and absorbs its prey, but how does it coordinate digestion and absorption to maximise the efficiency of this highly evolved mechanism? A new study that combines direct recordings from cells within the trap along with molecular characterization of nutrient transport reveals a complex and coordinated suite of mechanisms that underlie this elegant process. © 2013 Elsevier Ltd. Source


Burkhardt P.,Marine Biological Association of The United Kingdom
Journal of Experimental Biology | Year: 2015

The origin of neurons was a key event in evolution, allowing metazoans to evolve rapid behavioral responses to environmental cues. Reconstructing the origin of synaptic proteins promises to reveal their ancestral functions and might shed light on the evolution of the first neuron-like cells in metazoans. By analyzing the genomes of diverse metazoans and their closest relatives, the evolutionary history of diverse presynaptic and postsynaptic proteins has been reconstructed. These analyses revealed that choanoflagellates, the closest relatives of metazoans, possess diverse synaptic protein homologs. Recent studies have now begun to investigate their ancestral functions. A primordial neurosecretory apparatus in choanoflagellates was identified and it was found that the mechanism, by which presynaptic proteins required for secretion of neurotransmitters interact, is conserved in choanoflagellates and metazoans. Moreover, studies on the postsynaptic protein homolog Homer revealed unexpected localization patterns in choanoflagellates and new binding partners, both which are conserved in metazoans. These findings demonstrate that the study of choanoflagellates can uncover ancient and previously undescribed functions of synaptic proteins. © 2015. Published by The Company of Biologists Ltd. Source

Discover hidden collaborations