Entity

Time filter

Source Type

Fairfield Beach, OH, United States

Poirier M.C.,U.S. National Institutes of Health | Schwartz J.L.,University of Washington | Aardema M.J.,Marilyn Aardema Consulting LLC
Environmental and Molecular Mutagenesis | Year: 2014

One of the goals of the EMGS is to help members achieve professional success in the fields they have trained in. Today, there is greater competition for jobs in genetic toxicology, genomics, and basic research than ever before. In addition, job security and the ability to advance in one's career is challenging, regardless of whether one works in a regulatory, academic, or industry environment. At the EMGS Annual Meeting in Monterey, CA (September, 2013), the Women in EMGS Special Interest Group held a workshop to discuss strategies for achieving professional success. Presentations were given by three speakers, each representing a different employment environment: Government (Miriam C. Poirier), Academia (Jeffrey L. Schwartz), and Industry (Marilyn J. Aardema). Although some differences in factors or traits affecting success in the three employment sectors were noted by each of the speakers, common factors considered important for advancement included networking, seeking out mentors, and developing exceptional communication skills. © 2014 Wiley Periodicals, Inc. Source


Vanparys P.,Altoxicon BVBA | Corvi R.,Institute for Health and Consumer Protection IHCP | Aardema M.,Procter and Gamble | Aardema M.,Marilyn Aardema Consulting LLC | And 4 more authors.
Altex | Year: 2011

A prevalidation study on the cell transformation assays in SHE cells at pH 6.7, SHE cells at pH 7.0 and Balb/c 3T3 cell line was coordinated by ECVAM focussing on issues of standardisation of protocols, within-laboratory reproducibility, test method transferability and between-laboratory reproducibility. The Validation Management Team concluded that standardised protocols are now available that should be the basis for future use. The SHE pH 6.7, and the SHE pH 7.0 protocols and the assays system themselves are transferable between laboratories, and are reproducible within- and between-laboratories. For the Balb/c 3T3 method, some clarifications and modifications to the protocol were needed to obtain reproducible results. Overall, three methods have shown to be valuable to detect rodent carcinogens. Source


Corvi R.,European Commission - Joint Research Center Ispra | Aardema M.J.,Marilyn Aardema Consulting LLC | Aardema M.J.,Procter and Gamble | Gribaldo L.,European Commission - Joint Research Center Ispra | And 7 more authors.
Mutation Research - Genetic Toxicology and Environmental Mutagenesis | Year: 2012

The potential for a compound to induce carcinogenicity is a key consideration when ascertaining hazard and risk assessment of chemicals. Among the in vitro alternatives that have been developed for predicting carcinogenicity, in vitro cell transformation assays (CTAs) have been shown to involve a multistage process that closely models important stages of in vivo carcinogenesis and have the potential to detect both genotoxic and non-genotoxic carcinogens. These assays have been in use for decades and a substantial amount of data demonstrating their performance is available in the literature. However, for the standardised use of these assays for regulatory purposes, a formal evaluation of the assays, in particular focusing on development of standardised transferable protocols and further information on assay reproducibility, was considered important to serve as a basis for the drafting of generally accepted OECD test guidelines. To address this issue, a prevalidation study of the CTAs using the BALB/c 3T3 cell line, SHE cells at pH 6.7, and SHE cells at pH 7.0 was coordinated by the European Centre for the Validation of Alternative Methods (ECVAM) and focused on issues of standardisation of protocols, test method transferability and within- and between-laboratory reproducibility. The study resulted in the availability of standardised protocols that had undergone prevalidation [1,2]. The results of the ECVAM study demonstrated that for the BALB/c 3T3 method, some modifications to the protocol were needed to obtain reproducible results between laboratories, while the SHE pH 6.7 and the SHE pH 7.0 protocols are transferable between laboratories, and results are reproducible within- and between-laboratories. It is recommended that the BALB/c 3T3 and SHE protocols as instituted in this prevalidation study should be used in future applications of these respective transformation assays. To support their harmonised use and regulatory application, the development of an OECD test guideline for the SHE CTAs, based on the protocol published in this issue, is recommended. The development of an OECD test guideline for the BALB/c 3T3 CTA should likewise be further pursued upon the availability of additional supportive data and improvement of the statistical analysis. © 2011 Elsevier B.V. Source


Vanparys P.,Altoxicon BVBA | Corvi R.,European Commission - Joint Research Center Ispra | Aardema M.J.,Marilyn Aardema Consulting LLC | Gribaldo L.,European Commission - Joint Research Center Ispra | And 3 more authors.
Mutation Research - Genetic Toxicology and Environmental Mutagenesis | Year: 2012

Two year rodent bioassays play a key role in the assessment of carcinogenic potential of chemicals to humans. The seventh amendment to the European Cosmetics Directive will ban in 2013 the marketing of cosmetic and personal care products that contain ingredients that have been tested in animal models. Thus 2-year rodent bioassays will not be available for cosmetics/personal care products. Furthermore, for large testing programs like REACH, in vivo carcinogenicity testing is impractical. Alternative ways to carcinogenicity assessment are urgently required. In terms of standardization and validation, the most advanced in vitro tests for carcinogenicity are the cell transformation assays (CTAs). Although CTAs do not mimic the whole carcinogenesis process in vivo, they represent a valuable support in identifying transforming potential of chemicals. CTAs have been shown to detect genotoxic as well as non-genotoxic carcinogens and are helpful in the determination of thresholds for genotoxic and non-genotoxic carcinogens. The extensive review on CTAs by the OECD (OECD (2007) Environmental Health and Safety Publications, Series on Testing and Assessment, No. 31) and the proven within- and between-laboratories reproducibility of the SHE CTAs justifies broader use of these methods to assess carcinogenic potential of chemicals. © 2012 Elsevier B.V. Source


Kirsch-Volders M.,Vrije Universiteit Brussel | Decordier I.,Vrije Universiteit Brussel | Elhajouji A.,Novartis | Plas G.,Vrije Universiteit Brussel | And 2 more authors.
Mutagenesis | Year: 2011

The toxicological relevance of the micronucleus (MN) test is well defined: it is a multi-target genotoxic endpoint, assessing not only clastogenic and aneugenic events but also some epigenetic effects, which is simple to score, accurate, applicable in different cell types. In addition, it is predictive for cancer, amenable for automation and allows good extrapolation for potential limits of exposure or thresholds and it is easily measured in experimental both in vitro and in vivo systems. Implementation of in vitro micronucleus (IVMN) assays in the battery of tests for hazard and risk assessment of potential mutagens/carcinogens is therefore fully justified. Moreover, the final draft of an OECD guideline became recently available for this test. In this review, we discuss the prerequisites for an acceptable MN assay, including the cell as unit of observation, importance of cell membranes, the requirement of a mitotic or meiotic division and the assessment of cell division in the presence of the test substance. Furthermore, the importance of adequate design of protocols is highlighted and new developments, in particular the in vitro 3D human skin models, are discussed. Finally, we address future research perspectives including the possibility of a combined primary 3D human skin and primary human whole blood culture system, and the need for adaptation of the IVMN assays to assess the genotoxic potential of new materials, in particular nanomaterials. © The Author 2010. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. Source

Discover hidden collaborations