Time filter

Source Type

Hammer E.,Paul Scherrer Institute | Hammer E.,Grolimund Partner AG Environmental Engineering | Bukowiecki N.,Paul Scherrer Institute | Luo B.P.,ETH Zurich | And 8 more authors.
Atmospheric Chemistry and Physics | Year: 2015

Aerosol radiative forcing estimates suffer from large uncertainties as a result of insufficient understanding of aerosol-cloud interactions. The main source of these uncertainties is dynamical processes such as turbulence and entrainment but also key aerosol parameters such as aerosol number concentration and size distribution, and to a much lesser extent, the composition. From June to August 2011 a Cloud and Aerosol Characterization Experiment (CLACE2011) was performed at the high-alpine research station Jungfraujoch (Switzerland, 3580 m a.s.l.) focusing on the activation of aerosol to form liquid-phase clouds (in the cloud base temperature range of -8 to 5 °C). With a box model the sensitivity of the effective peak supersaturation (SSpeak), an important parameter for cloud activation, to key aerosol and dynamical parameters was investigated. The updraft velocity, which defines the cooling rate of an air parcel, was found to have the greatest influence on SSpeak. Small-scale variations in the cooling rate with large amplitudes can significantly alter CCN activation. Thus, an accurate knowledge of the air parcel history is required to estimate SSpeak. The results show that the cloud base updraft velocities estimated from the horizontal wind measurements made at the Jungfraujoch can be divided by a factor of approximately 4 to get the updraft velocity required for the model to reproduce the observed SSpeak. The aerosol number concentration and hygroscopic properties were found to be less important than the aerosol size in determining SSpeak. Furthermore turbulence is found to have a maximum influence when SSpeak is between approximately 0.2 and 0.4 %. Simulating the small-scale fluctuations with several amplitudes, frequencies and phases, revealed that independently of the amplitude, the effect of the frequency on SSpeak shows a maximum at 0.46 Hz (median over all phases) and at higher frequencies, the maximum SSpeak decreases again. © Author(s) 2015.

Bilde M.,University of Aarhus | Barsanti K.,Portland State University | Booth M.,University of Manchester | Cappa C.D.,University of California at Davis | And 34 more authors.
Chemical Reviews | Year: 2015

There are a number of techniques that can be used that differ in terms of whether they fundamentally probe the equilibrium and the temperature range over which they can be applied. The series of homologous, straight-chain dicarboxylic acids have received much attention over the past decade given their atmospheric relevance, commercial availability, and low saturation vapor pressures, thus making them ideal test compounds. Uncertainties in the solid-state saturation vapor pressures obtained from individual methodologies are typically on the order of 50-100%, but the differences between saturation vapor pressures obtained with different methods are approximately 1-4 orders of magnitude, with the spread tending to increase as the saturation vapor pressure decreases. Some of the dicarboxylic acids can exist with multiple solid-state structures that have distinct saturation vapor pressures. Furthermore, the samples on which measurements are performed may actually exist as amorphous subcooled liquids rather than solid crystalline compounds, again with consequences for the measured saturation vapor pressures, since the subcooled liquid phase will have a higher saturation vapor pressure than the crystalline solid phase. Compounds with equilibrium vapor pressures in this range will exhibit the greatest sensitivities in terms of their gas to particle partitioning to uncertainties in their saturation vapor pressures, with consequent impacts on the ability of explicit and semiexplicit chemical models to simulate secondary organic aerosol formation.

Ganbavale G.,ETH Zurich | Marcolli C.,ETH Zurich | Marcolli C.,Marcolli Chemistry and Physics Consulting GmbH | Krieger U.K.,ETH Zurich | And 4 more authors.
Atmospheric Chemistry and Physics | Year: 2014

This work presents experimental data of the temperature dependence of water activity in aqueous organic solutions relevant for tropospheric conditions (200-273 K). Water activity (w) at low temperatures (T) is a crucial parameter for predicting homogeneous ice nucleation. We investigated temperature-dependent water activities, ice freezing and melting temperatures of solutions, and vapour pressures of a selection of atmospherically relevant aqueous organic systems. To measure w over a wide composition range and with a focus on low temperatures, we use various w measurement techniques and instruments: a dew point water activity meter, an electrodynamic balance (EDB), differential scanning calorimetry (DSC), and a setup to measure the total gas phase pressure at equilibrium over aqueous solutions. Water activity measurements were performed for aqueous multicomponent and multifunctional organic mixtures containing the functional groups typically found in atmospheric organic aerosols, such as hydroxyl, carboxyl, ketone, ether, ester, and aromatic groups. The aqueous organic systems studied at several fixed compositions over a considerable temperature range differ significantly in their temperature dependence. Aqueous organic systems of 1,4-butanediol and methoxyacetic acid show a moderate decrease in w with decreasing temperature. The aqueous M5 system (a multicomponent system containing five different dicarboxylic acids) and aqueous 2-(2-ethoxyethoxy)ethanol solutions both show a strong increase of water activity with decreasing temperature at high solute concentrations for T < 270 K and T < 260 K, respectively. These measurements show that the temperature trend of w can be reversed at low temperatures and that linear extrapolations of high-temperature data may lead to erroneous predictions. To avoid this, experimentally determined w at low temperature are needed to improve thermodynamic models towards lower temperatures and for improved predictions of the ice nucleation ability of organic-water systems.

Renbaum-Wolff L.,University of British Columbia | Renbaum-Wolff L.,Aerodyne Research, Inc. | Renbaum-Wolff L.,Boston College | Song M.,University of British Columbia | And 11 more authors.
Atmospheric Chemistry and Physics | Year: 2016

Particles consisting of secondary organic material (SOM) are abundant in the atmosphere. To predict the role of these particles in climate, visibility and atmospheric chemistry, information on particle phase state (i.e., single liquid, two liquids and solid) is needed. This paper focuses on the phase state of SOM particles free of inorganic salts produced by the ozonolysis of α-pinene. Phase transitions were investigated in the laboratory using optical microscopy and theoretically using a thermodynamic model at 290 K and for relative humidities ranging from < 0.5 to 100 %. In the laboratory studies, a single phase was observed from 0 to 95 % relative humidity (RH) while two liquid phases were observed above 95 % RH. For increasing RH, the mechanism of liquid-liquid phase separation (LLPS) was spinodal decomposition. The RH range over which two liquid phases were observed did not depend on the direction of RH change. In the modeling studies, the SOM took up very little water and was a single organic-rich phase at low RH values. At high RH, the SOM underwent LLPS to form an organic-rich phase and a water-rich phase, consistent with the laboratory studies. The presence of LLPS at high RH values can have consequences for the cloud condensation nuclei (CCN) activity of SOM particles. In the simulated Köhler curves for SOM particles, two local maxima were observed. Depending on the composition of the SOM, the first or second maximum can determine the critical supersaturation for activation. Recently researchers have observed inconsistencies between measured CCN properties of SOM particles and hygroscopic growth measured below water saturation (i.e., hygroscopic parameters measured below water saturation were inconsistent with hygroscopic parameters measured above water saturation). The work presented here illustrates that such inconsistencies are expected for systems with LLPS when the water uptake at subsaturated conditions represents the hygroscopicity of an organic-rich phase while the barrier for CCN activation can be determined by the second maximum in the Köhler curve when the particles are water rich. © Author(s) 2016.

Nagare B.,ETH Zurich | Marcolli C.,ETH Zurich | Marcolli C.,Marcolli Chemistry and Physics Consulting GmbH | Welti A.,ETH Zurich | And 3 more authors.
Atmospheric Chemistry and Physics | Year: 2016

Ice nucleating particles (INPs) in the atmosphere are responsible for glaciating cloud droplets between 237 and 273 K. Different mechanisms of heterogeneous ice nucleation can compete under mixed-phase cloud conditions. Contact freezing is considered relevant because higher ice nucleation temperatures than for immersion freezing for the same INPs were observed. It has limitations because its efficiency depends on the number of collisions between cloud droplets and INPs. To date, direct comparisons of contact and immersion freezing with the same INP, for similar residence times and concentrations, are lacking. This study compares immersion and contact freezing efficiencies of three different INPs. The contact freezing data were obtained with the ETH CoLlision Ice Nucleation CHamber (CLINCH) using 80 μm diameter droplets, which can interact with INPs for residence times of 2 and 4 s in the chamber. The contact freezing efficiency was calculated by estimating the number of collisions between droplets and particles. Theoretical formulations of collision efficiencies gave too high freezing efficiencies for all investigated INPs, namely AgI particles with 200 nm electrical mobility diameter, 400 and 800 nm diameter Arizona Test Dust (ATD) and kaolinite particles. Comparison of freezing efficiencies by contact and immersion freezing is therefore limited by the accuracy of collision efficiencies. The concentration of particles was 1000 cm-3 for ATD and kaolinite and 500, 1000, 2000 and 5000 cm-3 for AgI. For concentrations <5000 cm-3, the droplets collect only one particle on average during their time in the chamber. For ATD and kaolinite particles, contact freezing efficiencies at 2 s residence time were smaller than at 4 s, which is in disagreement with a collisional contact freezing process but in accordance with immersion freezing or adhesion freezing. With "adhesion freezing", we refer to a contact nucleation process that is enhanced compared to immersion freezing due to the position of the INP on the droplet, and we discriminate it from collisional contact freezing, which assumes an enhancement due to the collision of the particle with the droplet. For best comparison with contact freezing results, immersion freezing experiments of the same INPs were performed with the continuous flow diffusion chamber Immersion Mode Cooling chAmber-Zurich Ice Nucleation Chamber (IMCA-ZINC) for a 3 s residence time. In IMCA-ZINC, each INP is activated into a droplet in IMCA and provides its surface for ice nucleation in the ZINC chamber. The comparison of contact and immersion freezing results did not confirm a general enhancement of freezing efficiency for contact compared with immersion freezing experiments. For AgI particles the onset of heterogeneous freezing in CLINCH was even shifted to lower temperatures compared with IMCA-ZINC. For ATD, freezing efficiencies for contact and immersion freezing experiments were similar. For kaolinite particles, contact freezing became detectable at higher temperatures than immersion freezing. Using contact angle information between water and the INP, it is discussed how the position of the INP in or on the droplets may influence its ice nucleation activity. © 2016 Author(s).

Ganbavale G.,ETH Zurich | Zuend A.,ETH Zurich | Zuend A.,California Institute of Technology | Zuend A.,McGill University | And 3 more authors.
Atmospheric Chemistry and Physics | Year: 2015

This study presents a new, improved parameterisation of the temperature dependence of activity coefficients in the AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) model applicable for aqueous as well as water-free organic solutions. For electrolyte-free organic and organic-water mixtures the AIOMFAC model uses a group-contribution approach based on UNIFAC (UNIversal quasi-chemical Functional-group Activity Coefficients). This group-contribution approach explicitly accounts for interactions among organic functional groups and between organic functional groups and water. The previous AIOMFAC version uses a simple parameterisation of the temperature dependence of activity coefficients, aimed to be applicable in the temperature range from ∼ 275 to ∼ 400 K. With the goal to improve the description of a wide variety of organic compounds found in atmospheric aerosols, we extend the AIOMFAC parameterisation for the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon to atmospherically relevant low temperatures. To this end we introduce a new parameterisation for the temperature dependence. The improved temperature dependence parameterisation is derived from classical thermodynamic theory by describing effects from changes in molar enthalpy and heat capacity of a multi-component system. Thermodynamic equilibrium data of aqueous organic and water-free organic mixtures from the literature are carefully assessed and complemented with new measurements to establish a comprehensive database, covering a wide temperature range (∼ 190 to ∼ 440 K) for many of the functional group combinations considered. Different experimental data types and their processing for the estimation of AIOMFAC model parameters are discussed. The new AIOMFAC parameterisation for the temperature dependence of activity coefficients from low to high temperatures shows an overall improvement of 28% in comparison to the previous model version, when both versions are compared to our database of experimentally determined activity coefficients and related thermodynamic data. When comparing the previous and new AIOMFAC model parameterisations to the subsets of experimental data with all temperatures below 274 K or all temperatures above 322 K (i.e. outside a 25 K margin of the reference temperature of 298 K), applying the new parameterisation leads to 37% improvement in each of the two temperature ranges considered. The new parameterisation of AIOMFAC agrees well with a large number of experimental data sets. Larger model-measurement discrepancies were found particularly for some of the systems containing multi-functional organic compounds. The affected systems were typically also poorly represented at room temperature and further improvements will be necessary to achieve better performance of AIOMFAC in these cases (assuming the experimental data are reliable). The performance of the AIOMFAC parameterisation is typically better for systems containing relatively small organic compounds and larger deviations may occur in mixtures where molecules of high structural complexity such as highly oxygenated compounds or molecules of high molecular mass (e.g. oligomers) prevail. Nevertheless, the new parameterisation enables the calculation of activity coefficients for a wide variety of different aqueous/water-free organic solutions down to the low temperatures present in the upper troposphere. © Author(s) 2015.

Brunamonti S.,ETH Zurich | Krieger U.K.,ETH Zurich | Marcolli C.,ETH Zurich | Marcolli C.,Marcolli Chemistry and Physics Consulting GmbH | Peter T.,ETH Zurich
Geophysical Research Letters | Year: 2015

Atmospheric black carbon (BC) is a major anthropogenic greenhouse agent, yet substantial uncertainties obstruct understanding its radiative forcing. Particularly debated is the extent of the absorption enhancement by internally compared to externally mixed BC, which critically depends on the interior morphology of the BC-containing particles. Here we suggest that a currently unaccounted morphology, optically very different from the customary core-shell and volume-mixing assumptions, likely occurs in aerosol particles undergoing liquid-liquid phase separation (LLPS). Using Raman spectroscopy on micrometer-sized droplets, we show that LLPS of an organic/inorganic model system drives redistribution of BC into the outer (organic) phase of the host particle. This results in an inverted core-shell structure, in which a transparent aqueous core is surrounded by a BC-containing absorbing shell. Based on Mie theory calculations, we estimate that such a redistribution can increase the absorption efficiency of internally mixed BC aerosols by up to 25% compared to the core-shell approximation. ©2015. American Geophysical Union. All Rights Reserved.

Marcolli C.,ETH Zurich | Marcolli C.,Marcolli Chemistry and Physics Consulting GmbH | Nagare B.,ETH Zurich | Welti A.,ETH Zurich | And 2 more authors.
Atmospheric Chemistry and Physics | Year: 2016

AgI is one of the best-investigated ice-nucleating substances. It has relevance for the atmosphere since it is used for glaciogenic cloud seeding. Theoretical and experimental studies over the last 60 years provide a complex picture of silver iodide as an ice-nucleating agent with conflicting and inconsistent results. This review compares experimental ice nucleation studies in order to analyze the factors that influence the ice nucleation ability of AgI. The following picture emerges from this analysis: the ice nucleation ability of AgI seems to be enhanced when the AgI particle is on the surface of a droplet, which is indeed the position that a particle takes when it can freely move in a droplet. The ice nucleation by particles with surfaces exposed to air depends on water adsorption. AgI surfaces seem to be most efficient at nucleating ice when they are exposed to relative humidity at or even above water saturation. For AgI particles that are completely immersed in water, the freezing temperature increases with increasing AgI surface area. Higher threshold freezing temperatures seem to correlate with improved lattice matches as can be seen for AgI-AgCl solid solutions and 3AgI·NH4I·6H2O, which have slightly better lattice matches with ice than AgI and also higher threshold freezing temperatures. However, the effect of a good lattice match is annihilated when the surfaces have charges. Also, the ice nucleation ability seems to decrease during dissolution of AgI particles. This introduces an additional history and time dependence for ice nucleation in cloud chambers with short residence times. © 2016 Author(s).

Nagare B.,ETH Zurich | Marcolli C.,ETH Zurich | Marcolli C.,Marcolli Chemistry and Physics Consulting GmbH | Stetzer O.,ETH Zurich | Lohmann U.,ETH Zurich
Atmospheric Chemistry and Physics | Year: 2015

Interactions of atmospheric aerosols with clouds influence cloud properties and modify the aerosol life cycle. Aerosol particles act as cloud condensation nuclei and ice nucleating particles or become incorporated into cloud droplets by scavenging. For an accurate description of aerosol scavenging and ice nucleation in contact mode, collision efficiency between droplets and aerosol particles needs to be known. This study derives the collision rate from experimental contact freezing data obtained with the ETH CoLlision Ice Nucleation CHamber (CLINCH). Freely falling 80 μm diameter water droplets are exposed to an aerosol consisting of 200 and 400 nm diameter silver iodide particles of concentrations from 500 to 5000 and 500 to 2000 cm-3, respectively, which act as ice nucleating particles in contact mode. The experimental data used to derive collision efficiency are in a temperature range of 238-245 K, where each collision of silver iodide particles with droplets can be assumed to result in the freezing of the droplet. An upper and lower limit of collision efficiency is also estimated for 800 nm diameter kaolinite particles. The chamber is kept at ice saturation at a temperature range of 236 to 261 K, leading to the slow evaporation of water droplets giving rise to thermophoresis and diffusiophoresis. Droplets and particles bear charges inducing electrophoresis. The experimentally derived collision efficiency values of 0.13, 0.07 and 0.047-0.11 for 200, 400 and 800 nm particles are around 1 order of magnitude higher than theoretical formulations which include Brownian diffusion, impaction, interception, thermophoretic, diffusiophoretic and electric forces. This discrepancy is most probably due to uncertainties and inaccuracies in the description of thermophoretic and diffusiophoretic processes acting together. This is, to the authors' knowledge, the first data set of collision efficiencies acquired below 273 K. More such experiments with different droplet and particle diameters are needed to improve our understanding of collision processes acting together. © 2015 Author(s).

Kaufmann L.,ETH Zurich | Marcolli C.,ETH Zurich | Marcolli C.,Marcolli Chemistry and Physics Consulting GmbH | Hofer J.,ETH Zurich | And 5 more authors.
Atmospheric Chemistry and Physics | Year: 2016

A total of 12 natural surface dust samples, which were surface-collected on four continents, most of them in dust source regions, were investigated with respect to their ice nucleation activity. Dust collection sites were distributed across Africa, South America, the Middle East, and Antarctica. Mineralogical composition has been determined by means of X-ray diffraction. All samples proved to be mixtures of minerals, with major contributions from quartz, calcite, clay minerals, K-feldspars, and (Na, Ca)-feldspars. Reference samples of these minerals were investigated with the same methods as the natural dust samples. Furthermore, Arizona test dust (ATD) was re-evaluated as a benchmark. Immersion freezing of emulsion and bulk samples was investigated by differential scanning calorimetry. For emulsion measurements, water droplets with a size distribution peaking at about 2 μm, containing different amounts of dust between 0.5 and 50 wt% were cooled until all droplets were frozen. These measurements characterize the average freezing behaviour of particles, as they are sensitive to the average active sites present in a dust sample. In addition, bulk measurements were conducted with one single 2 mg droplet consisting of a 5 wt% aqueous suspension of the dusts/minerals. These measurements allow the investigation of the best icenucleating particles/sites available in a dust sample. All natural dusts, except for the Antarctica and ATD samples, froze in a remarkably narrow temperature range with the heterogeneously frozen fraction reaching 10% between 244 and 250 K, 25% between 242 and 246 K, and 50% between 239 and 244 K. Bulk freezing occurred between 255 and 265 K. In contrast to the natural dusts, the reference minerals revealed ice nucleation temperatures with 2-3 times larger scatter. Calcite, dolomite, dolostone, and muscovite can be considered ice nucleation inactive. For microcline samples, a 50% heterogeneously frozen fraction occurred above 245K for all tested suspension concentrations, and a microcline mineral showed bulk freezing temperatures even above 270 K. This makes microcline (KAlSi3O8/ an exceptionally good ice-nucleating mineral, superior to all other analysed K-feldspars, (Na, Ca)-feldspars, and the clay minerals. In summary, the mineralogical composition can explain the observed freezing behaviour of 5 of the investigated 12 natural dust samples, and partly for 6 samples, leaving the freezing efficiency of only 1 sample not easily explained in terms of its mineral reference components. While this suggests that mineralogical composition is a major determinant of ice-nucleating ability, in practice, most natural samples consist of a mixture of minerals, and this mixture seems to lead to remarkably similar ice nucleation abilities, regardless of their exact composition, so that global models, in a first approximation, may represent mineral dust as a single species with respect to ice nucleation activity. However, more sophisticated representations of ice nucleation by mineral dusts should rely on the mineralogical composition based on a source scheme of dust emissions. © Author(s) 2016.

Loading Marcolli Chemistry and Physics Consulting GmbH collaborators
Loading Marcolli Chemistry and Physics Consulting GmbH collaborators