Time filter

Source Type

Ramirez C.M.,Marc and Ruti Bell Vascular Biology and Disease Program | Rotllan N.,Marc and Ruti Bell Vascular Biology and Disease Program | Vlassov A.V.,New York University | Vlassov A.V.,Life Technologies | And 14 more authors.
Circulation Research | Year: 2013

RATIONALE:: Foam cell formation because of excessive accumulation of cholesterol by macrophages is a pathological hallmark of atherosclerosis, the major cause of morbidity and mortality in Western societies. Liver X nuclear receptors (LXRs) regulate the expression of the adenosine triphosphate-binding cassette (ABC) transporters, including adenosine triphosphate-binding cassette transporter A1 (ABCA1) and adenosine triphosphate-binding cassette transporter G1 (ABCG1). ABCA1 and ABCG1 facilitate the efflux of cholesterol from macrophages and regulate high-density lipoprotein (HDL) biogenesis. Increasing evidence supports the role of microRNA (miRNAs) in regulating cholesterol metabolism through ABC transporters. OBJECTIVE:: We aimed to identify novel miRNAs that regulate cholesterol metabolism in macrophages stimulated with LXR agonists. METHODS AND RESULTS:: To map the miRNA expression signature of macrophages stimulated with LXR agonists, we performed an miRNA profiling microarray analysis in primary mouse peritoneal macrophages stimulated with LXR ligands. We report that LXR ligands increase miR-144 expression in macrophages and mouse livers. Overexpression of miR-144 reduces ABCA1 expression and attenuates cholesterol efflux to apolipoproteinA1 in macrophages. Delivery of miR-144 oligonucleotides to mice attenuates ABCA1 expression in the liver, reducing HDL levels. Conversely, silencing of miR-144 in mice increases the expression of ABCA1 and plasma HDL levels. Thus, miR-144 seems to regulate both macrophage cholesterol efflux and HDL biogenesis in the liver. CONCLUSIONS:: miR-144 regulates cholesterol metabolism via suppressing ABCA1 expression and modulation of miRNAs may represent a potential therapeutical intervention for treating dyslipidemia and atherosclerotic vascular disease. © 2013 American Heart Association, Inc.

Loading Marc and Ruti Bell Vascular Biology and Disease Program collaborators
Loading Marc and Ruti Bell Vascular Biology and Disease Program collaborators