Time filter

Source Type

Thame, United Kingdom

Agency: Cordis | Branch: FP7 | Program: CP | Phase: ENERGY.2010.2.1-2 | Award Amount: 2.11M | Year: 2010

The minority carrier diffusion lengths are small in polycrystalline or amorphous materials used in thin film solar cells, requiring thin layers to maximize charge collection. This is contradictory for the requirement to maximize solar energy absorption. The optical design consisting in increasing solar cells light-trapping capability is of prime importance. In order to provide total internal reflection, both randomly textured surfaces and regularly patterned surfaces have been investigated. No one of these approaches provides optimal light trapping because no one is suitable for the broad solar spectrum. Recent approaches involving new TCO layers show that double textures provide improved scattering. The AGATHA project aims to realize an advanced light trapping design by combining micro-texturing of glass by hot embossing and nano-texturing of the top TCO layer by etching. The parameters of this modulated surface texture can be adjusted to maximize the light scattering in all the solar spectrum to provide a significant increase in both short-circuit current and EQE. Suitable for high production throughput, the new texturation process chain developed in AGATHA fits with the intrinsic low cost nature of thin film solar cells To demonstrate the efficiency of this optical trapping design, the modulated texture concept will be implemented in a-Si:H based, -c-Si:H based and CIGS based thin films technologies. The objective is to reduce the active material thickness, from 250 nm up to 150 nm for the a-Si:H, from 1.5 m up to 1 m for c-Si:H and from 2.5 m up to 800 nm for the CIGS, when increasing the short circuit current of 15 % The choice of these technologies aims to maximize the impact by addressing 70% of the thin film market. According to typical solar cells cost structure, a 15 % reduction of the cost/m2 is achievable. Combined with the Jsc improvement, the implementation of modulated surface texture should result in a 20 % decrease of the /W indicator. AGATHA is an EU coordinated project in the framework of call FP7-ENERGY-2010-INDIA, foreseeing a simultaneous start with the Indian coordinated project. Accordingly, the Indian project should start at the latest within 3 months of the signature of the EU grant agreement.

Agency: Cordis | Branch: FP7 | Program: MC-IAPP | Phase: PEOPLE-2007-3-1-IAPP | Award Amount: 1.13M | Year: 2008

The proposal aims at mutual technology transfer between two academic research laboratories and an industrial partner. NTUA has experience on sensors and electronic/optoelectronic devices based on nanoparticles arrays, NCSRD has experience on the nanoscale characterization of materials and microelectronic device fabrication technologies and MANTIS Deposition Ltd has developed a nanoparticle source able to synthesize nanoparticles of extreme size uniformity. A main scientific goal of the project is the formation of 2-dimentional and 1-D configurations of nanoparticles with controlled size and density. The accomplishment of this target will enable the fabrication of nanoparticle based sensors and electronic/optoelectronic devices beyond the state-of-the-art. The academic partners will have the opportunity to advance their research in the above fields by acquiring knowledge in the nanoparticle manufacturing technique of Mantis. From this exchange of knowledge the SME will benefit from the investigation of its product applicability in these new fields. The complementarity of know-how of the partners which extends from the nanoparticles to electronic sensors and devices fabrication technologies supported by the characterization of electronic, optical and structural properties of materials used it is a solid background for the partners to further develop their research agenda through mutual transfer of technology.

Agency: Cordis | Branch: FP7 | Program: CP | Phase: ENERGY.2008.10.1.2;NMP-2008-2.6-1 | Award Amount: 2.09M | Year: 2009

The objective of the SOLAMON project is to develop high potential Plasmon Generating Nanocomposite Materials (PGNM) which will pave the way to the generation III solar cells (high efficiency & low cost). The objective is an augmentation in the External Quantum Efficiency resulting in an increase of 20% in the short circuit current density of the thin film solar cells. To achieve such an ambitious goal, the project will focus on the development of fully tailored building block nanoparticles able to generate a plasmon effect for enhanced solar absorption in thin film solar cells. Such nanoparticles designed for an optimum absorption will be integrated in solar cells matrix using a recently developed room temperature deposition process. This step will result in the specific design of PGNM for solar cells using a knowledge based approach coupling modeling at both scales: nanoscopic (plasmonic structure) and macroscopic (solar cells). SOLAMON will address three different classes of solar cells: a-Si:H thin films, organics and dye sensitised. Developing the PGNM on these three classes aims at maximizing the project impact and not to compare them because scientific background acquired on these technologies could be easily transferred to other ones. As a matter of fact, a-Si:H technology targets mainly the BuiIding Integrated PV (BIPV) market (large surfaces) whereas the two others are most suitable for the consumer good market (nomad applications). The project workprogram, the critical path and the contingencies plans are designed to maximize both social and economic impact. For this reason, the BIPV applications (i.e. a-Si:H based technology) will be firstly considered when a strategic choice occurs, keeping in mind that, even of large economic importance, the two other technologies do not have the same key BIPV environmental and social impact.

Mantis Deposition | Date: 2010-06-30

Composite nanoparticles can be produced by a processing apparatus comprising a source of charged, moving nanoparticles or a first material and a first size, apparatus for imposing a like potential in a region lying in the path of the nanoparticles, and a physical vapour deposition source of a second material directed toward the region, thereby to produce nanoparticles of a second and greater size being a composite of the first and second materials. The apparatus for imposing a like potential can comprise one or more conductive rings surrounding the path of the nanoparticles, each at a successively lower potential. The physical vapour deposition source can be one or more of a sputter target, or an evaporative source, or another PVD source. There can be a plurality of physical vapour deposition sources, thereby allowing a larger region in which the shell is deposited. All of the physical vapour deposition sources can deposit the same material, for a uniform shell. Alternatively, different sources could allow for multiple shells or alloy shells.

Agency: Cordis | Branch: FP7 | Program: JTI-CP-FCH | Phase: SP1-JTI-FCH.2011.3.1;SP1-JTI-FCH.2011.3.4 | Award Amount: 3.42M | Year: 2012

The development of Solid Oxide Fuel Cells (SOFCs) operating on hydrocarbon fuels (natural gas, biofuel,LPG) is the key to their short to medium term broad commercialization. The development of direct HC SOFCs still meets lot of challenges and problems arising from the fact that the anode materials operate under severe conditions leading to low activity towards reforming and oxidation reactions, fast deactivation due to carbon formation and instability due to the presence of sulphur compounds. Although research on these issues is intensive, no major technological breakthroughs have been so far with respect to robust operation, sufficient lifetime and competitive cost. T-CELL proposes a novel electrochemical approach aiming at tackling these problems by a comprehensive effort to define, explore, characterize, develop and realize a radically new triode approach to SOFC technology together with a novel, advanced architecture for cell and stack design. This advance will be accomplished by means of an integrated approach based both on materials development and on the deployment of an innovative cell design that permits the effective control of electrocatalytic activity under steam or dry reforming conditions. The novelty of the proposed work lies in the pioneering effort to apply Ni-modified materials electrodes of proven advanced tolerance, as anodic electrodes in SOFCs and in the exploitation of our novel triode SOFC concept which introduces a new controllable variable into fuel cell operation. In order to provide a proof of concept of the stackability of triode cells, a triode SOFC stack consisting of at least 4 repeating units will be developed and its performance will be evaluated under methane and steam co-feed, in presence of a small concentration of sulphur compound. Success of the overall ambitious objectives of the proposed project will result in major progress beyond the current state-of-the-art and will open entirely new perspectives in cell and stack designs.

Discover hidden collaborations