Winnipeg, Canada
Winnipeg, Canada

Manitoba Hydro is the electric power and natural gas utility in the province of Manitoba, Canada. Founded in 1961, it is a provincial Crown Corporation, governed by the Manitoba Hydro-Electric Board and the Manitoba Hydro Act. Today the company operates 15 interconnected generating stations. It has more than 527,000 electric power customers and more than 263,000 natural gas customers. Since most of the electrical energy is provided by hydroelectric power, the utility has low electricity rates. Stations in Northern Manitoba are connected by a HVDC system, the Nelson River Bipole, to customers in the south. The internal staff are members of the Canadian Union of Public Employees Local 998 while the outside workers are members of the International Brotherhood of Electrical Workers Local 2034.Manitoba Hydro headquarters in the downtown Winnipeg Manitoba Hydro Place officially opened in 2009. Wikipedia.


Time filter

Source Type

News Article | May 11, 2017
Site: globenewswire.com

TORONTO, May 11, 2017 (GLOBE NEWSWIRE) -- Over 300 free events will take place in 30 cities across Canada for the 10th edition of Science Rendezvous on Saturday, May 13, 2017. Science Rendezvous is Canada’s largest nation-wide science festival. Science Rendezvous will launch the national science, technology, engineering and mathematics series of events for Science Odyssey; a ten-day national celebration of Canadian innovation that is put on by the Natural Sciences and Engineering Research Council (NSERC).  Science Rendezvous will host NSERC's Innovation Showcase at festival sites across Canada in an effort to bring current Canadian innovation to the public, and demonstrate what can be achieved by collaboration between industry leaders and top Canadian researchers. NSERC is the largest investor in science and engineering research and innovation in Canada. As a convenor, they connect universities and colleges with industry partners to enable innovation-driven activities – allowing scientists and engineers across the country to develop world-leading discoveries and work with companies to turn these discoveries into inventions and products that will benefit Canadians. The NSERC Innovation Showcase will be presented by the researchers involved and will be at selected Science Rendezvous event sites across the country.  They are free and open to the public, with most taking place between 10 a.m. – 4 p.m. on Saturday, May 13, 2017. For more information about Science Rendezvous events and the NSERC Innovation Showcase in your city visit: http://www.sciencerendezvous.ca/event‐sites/ http://www.sciencerendezvous.ca/category/nserc/ Science Rendezvous is an annual nation‐wide science festival dedicated to science outreach. Founded in 2008, it has grown to include over 300 simultaneous events in partnership with 40 of Canada’s top research institutions, 6,000 innovators and 122 community organizations across the country. www.sciencerendezvous.ca This year’s Science Rendezvous activities will launch the ten-day Science Odyssey series in partnership with the Natural Sciences and Engineering Research Council (NSERC). http://www.sciod.ca/ This is only a sample of participating venues. See http://www.sciencerendezvous.ca/category/nserc/ for more details Cybermentor - Telus Spark (Science Centre) (10am – 3pm) Southern Alberta Institute of Technology (SAIT) will showcase their solution to our fresh water requirements at the Telus Spark. Desalinated water powered by bicycles. University of Alberta- May 12 (1pm- 4pm) Nasseri School professors and students will share advances in building engineering research at an Open House event. This event features the research of Dr. Mohamed Al-Hussein, with support from NSERC. Dr. Mohamed Al-Hussein is a professor and NSERC Industrial Research Chair (IRC) in the Industrialization of Building Construction at the University of Alberta, and a highly sought researcher and consultant in the areas of automated machine development, lean manufacturing, construction process optimization, CO2 emission quantification, and building information modelling (BIM), with the development of modular and offsite construction technologies and practices forming the hub of his research. Kwantlen Polytechnic University – Langley Campus (11am – 3pm) Kwantlen's Institute for Sustainable Horticulture (ISH) was created in 2004 to be a partnership of academia with B.C.'s horticultural industries and the community to support British Columbia in meeting demands for a higher level of sustainability and environmental responsibility from horticulture, silviculture, forestry, and urban landscapes. The development of biological pest management products useful to growers, and economically viable to producers, is one of the primary goals of Kwantlen's Institute for Sustainable Horticulture. The work of Dr. Deborah Henderson (Director, ISH and LEEF Regional Innovation Chair in Sustainable Horticulture), the Institute's innovative research into bio-products and pollination will be highlighted at this Kwantlen Polytechnic University’s Science Rendezvous event.  Benefits for plants from extracts of a native kelp species, better pollination of greenhouse tomatoes with native bumblebee pollinators, biofertilizers made from insects, and biofungicides that can be used to replace pesticides, will be showcased. Simon Fraser University – Burnaby campus (11am – 3pm) Better brain protection will be demonstrated from the work of Dr. Farid Golnaraghi at the Head Injury Prevention Lab (the HIP lab). Collisions with the head are rarely normal impacts to the surface of the helmet; most come at an angle, causing both sharp twisting and compression of the brain. At the HIP lab a micro-engineered membrane called Shield-X membrane was developed; technology that can better mitigate the injurious effects of the sharp twisting of the brain. Shield-X membrane disengages the impacting force from the head and results in significant reduction of the sharp twisting of the brain. The technology has been successfully tested by helmet manufacturers in the US and Canada, and soon you may see bicycle, hockey, ski, and football helmets equipped with Shield-X membrane. Let’s Talk Science with the University of British Columbia – The Old Barn Community Centre (10am – 2pm) Discover the future of touch screens, the foldable technology, and a glimpse into the future.  The work of Mirza Saquib Sarwar, PhD Candidate and NSERC CGS (Alexander Graham Bell) Scholarship Holder and John D. Madden, Professor of Electrical and Computer Engineering, Advanced Materials and Process Engineering Laboratory, UBC will be showcased.  An innovative smart skin that detects the proximity and touch of fingers to a surface will be displayed. It is stretchable and bendable. It could be useful for providing touch sensation to robots, making it easier for them to work with humans, and to replicate human dexterity.  As a transparent and stretchable touch interface that could be used on stretchable tablets or smart phones, or any surface – kitchen cupboard, table top, floor etc. to make it interactive.  It is part of broader technology movements to make our devices more portable, wearable and connected. University of Manitoba, Fort Garry Campus, Science and Engineering Bldg (11am – 4pm) This event is featuring the research of Red River College, who have been working in collaboration with various partners, with support from the NSERC. Assisted by NSERC’s innovation programming, Red River College has developed an all-electric transit bus and charging system, and is currently developing MotiveLab – a climatic chamber with chassis dyno large enough for a highway bus. The research of Dr. Julissa Roncal, who has been working in collaboration with Stantec Consulting, with support from NSERC will be showcased.  Stantec turned to Dr. Roncal to help them understand how the specific environmental conditions of a particular geographical area - potentially being approved for natural resource extraction - may or may not support rare plants. This research collaboration has led to the development of unique probability models of suitable habitats for five rare plants in Labrador. This new knowledge will be added within Stantec's environmental impact statements, which will improve their assessments on the real distribution of rare plants, and the real impact of proposed natural resource developments. This work will also fill a knowledge gap that results in sometimes-unnecessary mitigation plans, therefore the general environmental assessment industry will benefit from the research outcomes, as well as the natural resource sector, and government regulatory agencies responsible for approving natural resource extraction. The research of Dr. Eric Vander Wal, who has been working in collaboration with Manitoba Hydro, with support from NSERC will be showcased. Assisted by NSERC’s innovation programming, Manitoba Hydro turned to Dr. Vander Wal to help them understand how transmission right-of-ways constructed through the wilderness affects behavior in keystone predators (wolves) and prey (moose) and their population dynamics. The project also has value to rural and indigenous communities through which transmission right-of-ways are routed. It is hoped that this research collaboration will produce results that illustrate whether wolves select or avoid transmission right-of-ways and how this may affect predator-prey interactions. Canada will benefit from this information because it will help companies that transmit hydrogenerated electricity economize their transmission line routing and monitoring of right-of-way impacts, while balancing the possible local and ecological impacts of these large human-made features on the landscape. The research of Dr. Stephen Butt, who has been working in collaboration with Anaconda Mining Inc., with support from NSERC will be showcased. Assisted by NSERC’s innovation programming, Anaconda Mining turned to Dr. Butt to help them solve the mine blasting challenge of identifying ore and waste rock intervals within a drilled blast hole due to the dilution of the cuttings. This challenge results in portions of the blasted muck being grouped in the wrong ore grade category for processing or, worse, being designated as waste with no gold recovery at all.  It is hoped that this research collaboration will lead to a more efficient way to determine if the content is designated as ore to send to the mill for processing, or waste. The project will also lead to further collaboration on rock penetration and fragmentation problems within the company's mining and development activities. The research of Dr. Baiyu (Helen) Zhang, who has been working in collaboration with Altius Minerals Corporation, with support from the NSERC will be showcased. Assisted by NSERC’s innovation programming, Altius turned to Dr. Zhang to help them investigate the feasibility of natural processes to decrease concentrations of an oil-contaminated site in an Inuit community in Labrador. It is hoped that this research collaboration will ultimately lead to the development of a promising approach for monitoring microbial activities without drilling monitoring wells in Labrador; which could facilitate future remediation actions. The project will also lead to an improved and healthier working and living environment for Canadians, especially the Inuit community in Labrador. Ryerson University at Yonge-Dundas Square (10am – 4pm) Visit this year’s Science Rendezvous event at Ryerson University to see how chemistry can help to light up your life!  Featured at this year’s event will be dynamic young Ryerson researcher, Dr. Bryan Koivisto, who -- with support from ‘Engage’ and ‘Engage Plus’ Grants from NSERC -- has been working with London, Ontario-based Sciencetech Inc. to develop a prototype LED solar simulator that can be tuned to match any natural lighting condition – from ambient indoor conditions to compact fluorescent lighting to bright outdoor conditions in the Arctic. This great partnership between Dr. Koivisto’s Ryerson research team and Sciencetech Inc. has been able to create an innovative technology that will help the Canadian company stay competitive in the growing solar simulation market and shine brightly in Canada and around the world. University of Toronto St. George campus (11am – 5pm) Ever heard somebody say, ‘That’s about as interesting as watching paint dry?’  Well, for automotive manufacturers and their supplier companies, watching paint dry really is interesting --- and important.  That’s because the quality of a new vehicle’s paint finish is a critical part of buyer appeal.  Bad paint?  No sale.  Unfortunately, drying conditions at the manufacturer’s paint shop can result in all kinds of problems in the final finish -- problems with colorful names like ‘orange peel’ and ‘fish-eye’!  To try to understand how these defects happen and – more important -- how to prevent them, carmaker General Motors and Canadian manufacturing giant Magna Corporation recently partnered with Professor Sanjeev  Chandra at the University of Toronto’s Mechanical Engineering department to find some answers.  Funding support came from Canada’s Natural Sciences and Engineering Research Council (NSERC) by way of a ‘Collaborative R&D’ grant.  Working together, the GM-Magna-U of T team prepared painted ‘coupons’ (small plates of freshly-painted sheet metal) and took videos of the paint drying under different temperature and humidity conditions.   The flow patterns in the drying paint samples were captured on video and then the video was used to generate a computer simulation of the drying process.  The end result?  A new computer-based tool that lets the companies predict the quality of the paint finish before it even gets sprayed on the vehicle.  Watching paint dry pays off! Queen’s University at Rogers K-ROCK Centre (10am – 3pm) Ever heard of ‘3D printing’?  In industry, it’s called ‘additive manufacturing’ and it’s rapidly changing the way that everything from aircraft engines to automobile parts to smartphones are made.  An Additive Manufacturing printer uses a computer-based ‘CAD’ drawing to guide a special laser beam as it scans over a bed of metal powder.  The laser beam fuses the metal powder, layer by layer, so that it ‘writes’ a 3D metal component.  Kingston and Queen’s are hotbeds of innovation for this laser-based manufacturing technology.  Starting back in 2014, Queen’s physics researcher Dr. James Fraser and local company Laser Depth Dynamics (itself born at Queen’s) have used funding support from NSERC to build an innovative research collaboration in this exciting area of technology. Come visit the Queen’s-Laser Depth Dynamics team at Science Rendezvous Kingston to learn more about how lasers are being used to turn piles of metal powder into complex parts that help products from smartphones to cars deliver better performance and offer great new features.  You’ll even be able to try your hand at being a laser physicist!  Visit Dr. Fraser and let him show you how to use a laser beam to measure the diameter of a single strand of your own hair! York University at Main Street Markham Farmers’ Market (10am – 3pm) Smartphones use all kinds of leading-edge technologies to help them deliver all the features and performance that users enjoy – and demand.  Like watching video content!  From anywhere!  Recent hardware developments in these mobile devices have created a demand for completely new video compression techniques with adjustable quality of services. When the receiver is a mobile user, the high bit-rate video data needs to be transcoded to a low bit-rate format that’s capable of being adjusted to the network and receiver’s specifications, while preserving the best possible video quality.  Working with funding support from Canada’s Natural Sciences and Engineering Council (NSERC), York University computer engineering researchers Dr. Aijin An and Dr. Amir Asif launched a long-term research collaboration with computing giant IBM Canada in 2014 to develop an innovative ‘transcoding’ video compression strategy capable of sustaining video delivery performance with certain immunity to the bandwidth fluctuations which occur in network connectivity.  So what, you ask?  Well, now you’ll be able to watch your favourite videos on your smartphone even while you’re out in the middle of the lake in your boat at the cottage! University of Saskatchewan- Canadian Light Source tours (7pm) Dr. Matthew Lindsay and his graduate students recently completed a study of metal leaching from oil sands petroleum coke, which is a major byproduct of bitumen upgrading at oil sands mines. Their research, with funding from NSERC, in partnership with Syncrude Canada Ltd. identified geochemical conditions under which potentially hazardous metals – nickel and vanadium – are leached into groundwater. These findings are helping Syncrude identify locations for storing petroleum coke within reclamation landscapes to reduce metal leaching. Dr. Lindsay has partnered with Syncrude on several other projects aimed at minimizing long-term impacts of mine wastes on water quality within reclamation landscapes.


News Article | May 11, 2017
Site: globenewswire.com

TORONTO, May 11, 2017 (GLOBE NEWSWIRE) -- Over 300 free events will take place in 30 cities across Canada for the 10th edition of Science Rendezvous on Saturday, May 13, 2017. Science Rendezvous is Canada’s largest nation-wide science festival. Science Rendezvous will launch the national science, technology, engineering and mathematics series of events for Science Odyssey; a ten-day national celebration of Canadian innovation that is put on by the Natural Sciences and Engineering Research Council (NSERC).  Science Rendezvous will host NSERC's Innovation Showcase at festival sites across Canada in an effort to bring current Canadian innovation to the public, and demonstrate what can be achieved by collaboration between industry leaders and top Canadian researchers. NSERC is the largest investor in science and engineering research and innovation in Canada. As a convenor, they connect universities and colleges with industry partners to enable innovation-driven activities – allowing scientists and engineers across the country to develop world-leading discoveries and work with companies to turn these discoveries into inventions and products that will benefit Canadians. The NSERC Innovation Showcase will be presented by the researchers involved and will be at selected Science Rendezvous event sites across the country.  They are free and open to the public, with most taking place between 10 a.m. – 4 p.m. on Saturday, May 13, 2017. For more information about Science Rendezvous events and the NSERC Innovation Showcase in your city visit: http://www.sciencerendezvous.ca/event‐sites/ http://www.sciencerendezvous.ca/category/nserc/ Science Rendezvous is an annual nation‐wide science festival dedicated to science outreach. Founded in 2008, it has grown to include over 300 simultaneous events in partnership with 40 of Canada’s top research institutions, 6,000 innovators and 122 community organizations across the country. www.sciencerendezvous.ca This year’s Science Rendezvous activities will launch the ten-day Science Odyssey series in partnership with the Natural Sciences and Engineering Research Council (NSERC). http://www.sciod.ca/ This is only a sample of participating venues. See http://www.sciencerendezvous.ca/category/nserc/ for more details Cybermentor - Telus Spark (Science Centre) (10am – 3pm) Southern Alberta Institute of Technology (SAIT) will showcase their solution to our fresh water requirements at the Telus Spark. Desalinated water powered by bicycles. University of Alberta- May 12 (1pm- 4pm) Nasseri School professors and students will share advances in building engineering research at an Open House event. This event features the research of Dr. Mohamed Al-Hussein, with support from NSERC. Dr. Mohamed Al-Hussein is a professor and NSERC Industrial Research Chair (IRC) in the Industrialization of Building Construction at the University of Alberta, and a highly sought researcher and consultant in the areas of automated machine development, lean manufacturing, construction process optimization, CO2 emission quantification, and building information modelling (BIM), with the development of modular and offsite construction technologies and practices forming the hub of his research. Kwantlen Polytechnic University – Langley Campus (11am – 3pm) Kwantlen's Institute for Sustainable Horticulture (ISH) was created in 2004 to be a partnership of academia with B.C.'s horticultural industries and the community to support British Columbia in meeting demands for a higher level of sustainability and environmental responsibility from horticulture, silviculture, forestry, and urban landscapes. The development of biological pest management products useful to growers, and economically viable to producers, is one of the primary goals of Kwantlen's Institute for Sustainable Horticulture. The work of Dr. Deborah Henderson (Director, ISH and LEEF Regional Innovation Chair in Sustainable Horticulture), the Institute's innovative research into bio-products and pollination will be highlighted at this Kwantlen Polytechnic University’s Science Rendezvous event.  Benefits for plants from extracts of a native kelp species, better pollination of greenhouse tomatoes with native bumblebee pollinators, biofertilizers made from insects, and biofungicides that can be used to replace pesticides, will be showcased. Simon Fraser University – Burnaby campus (11am – 3pm) Better brain protection will be demonstrated from the work of Dr. Farid Golnaraghi at the Head Injury Prevention Lab (the HIP lab). Collisions with the head are rarely normal impacts to the surface of the helmet; most come at an angle, causing both sharp twisting and compression of the brain. At the HIP lab a micro-engineered membrane called Shield-X membrane was developed; technology that can better mitigate the injurious effects of the sharp twisting of the brain. Shield-X membrane disengages the impacting force from the head and results in significant reduction of the sharp twisting of the brain. The technology has been successfully tested by helmet manufacturers in the US and Canada, and soon you may see bicycle, hockey, ski, and football helmets equipped with Shield-X membrane. Let’s Talk Science with the University of British Columbia – The Old Barn Community Centre (10am – 2pm) Discover the future of touch screens, the foldable technology, and a glimpse into the future.  The work of Mirza Saquib Sarwar, PhD Candidate and NSERC CGS (Alexander Graham Bell) Scholarship Holder and John D. Madden, Professor of Electrical and Computer Engineering, Advanced Materials and Process Engineering Laboratory, UBC will be showcased.  An innovative smart skin that detects the proximity and touch of fingers to a surface will be displayed. It is stretchable and bendable. It could be useful for providing touch sensation to robots, making it easier for them to work with humans, and to replicate human dexterity.  As a transparent and stretchable touch interface that could be used on stretchable tablets or smart phones, or any surface – kitchen cupboard, table top, floor etc. to make it interactive.  It is part of broader technology movements to make our devices more portable, wearable and connected. University of Manitoba, Fort Garry Campus, Science and Engineering Bldg (11am – 4pm) This event is featuring the research of Red River College, who have been working in collaboration with various partners, with support from the NSERC. Assisted by NSERC’s innovation programming, Red River College has developed an all-electric transit bus and charging system, and is currently developing MotiveLab – a climatic chamber with chassis dyno large enough for a highway bus. The research of Dr. Julissa Roncal, who has been working in collaboration with Stantec Consulting, with support from NSERC will be showcased.  Stantec turned to Dr. Roncal to help them understand how the specific environmental conditions of a particular geographical area - potentially being approved for natural resource extraction - may or may not support rare plants. This research collaboration has led to the development of unique probability models of suitable habitats for five rare plants in Labrador. This new knowledge will be added within Stantec's environmental impact statements, which will improve their assessments on the real distribution of rare plants, and the real impact of proposed natural resource developments. This work will also fill a knowledge gap that results in sometimes-unnecessary mitigation plans, therefore the general environmental assessment industry will benefit from the research outcomes, as well as the natural resource sector, and government regulatory agencies responsible for approving natural resource extraction. The research of Dr. Eric Vander Wal, who has been working in collaboration with Manitoba Hydro, with support from NSERC will be showcased. Assisted by NSERC’s innovation programming, Manitoba Hydro turned to Dr. Vander Wal to help them understand how transmission right-of-ways constructed through the wilderness affects behavior in keystone predators (wolves) and prey (moose) and their population dynamics. The project also has value to rural and indigenous communities through which transmission right-of-ways are routed. It is hoped that this research collaboration will produce results that illustrate whether wolves select or avoid transmission right-of-ways and how this may affect predator-prey interactions. Canada will benefit from this information because it will help companies that transmit hydrogenerated electricity economize their transmission line routing and monitoring of right-of-way impacts, while balancing the possible local and ecological impacts of these large human-made features on the landscape. The research of Dr. Stephen Butt, who has been working in collaboration with Anaconda Mining Inc., with support from NSERC will be showcased. Assisted by NSERC’s innovation programming, Anaconda Mining turned to Dr. Butt to help them solve the mine blasting challenge of identifying ore and waste rock intervals within a drilled blast hole due to the dilution of the cuttings. This challenge results in portions of the blasted muck being grouped in the wrong ore grade category for processing or, worse, being designated as waste with no gold recovery at all.  It is hoped that this research collaboration will lead to a more efficient way to determine if the content is designated as ore to send to the mill for processing, or waste. The project will also lead to further collaboration on rock penetration and fragmentation problems within the company's mining and development activities. The research of Dr. Baiyu (Helen) Zhang, who has been working in collaboration with Altius Minerals Corporation, with support from the NSERC will be showcased. Assisted by NSERC’s innovation programming, Altius turned to Dr. Zhang to help them investigate the feasibility of natural processes to decrease concentrations of an oil-contaminated site in an Inuit community in Labrador. It is hoped that this research collaboration will ultimately lead to the development of a promising approach for monitoring microbial activities without drilling monitoring wells in Labrador; which could facilitate future remediation actions. The project will also lead to an improved and healthier working and living environment for Canadians, especially the Inuit community in Labrador. Ryerson University at Yonge-Dundas Square (10am – 4pm) Visit this year’s Science Rendezvous event at Ryerson University to see how chemistry can help to light up your life!  Featured at this year’s event will be dynamic young Ryerson researcher, Dr. Bryan Koivisto, who -- with support from ‘Engage’ and ‘Engage Plus’ Grants from NSERC -- has been working with London, Ontario-based Sciencetech Inc. to develop a prototype LED solar simulator that can be tuned to match any natural lighting condition – from ambient indoor conditions to compact fluorescent lighting to bright outdoor conditions in the Arctic. This great partnership between Dr. Koivisto’s Ryerson research team and Sciencetech Inc. has been able to create an innovative technology that will help the Canadian company stay competitive in the growing solar simulation market and shine brightly in Canada and around the world. University of Toronto St. George campus (11am – 5pm) Ever heard somebody say, ‘That’s about as interesting as watching paint dry?’  Well, for automotive manufacturers and their supplier companies, watching paint dry really is interesting --- and important.  That’s because the quality of a new vehicle’s paint finish is a critical part of buyer appeal.  Bad paint?  No sale.  Unfortunately, drying conditions at the manufacturer’s paint shop can result in all kinds of problems in the final finish -- problems with colorful names like ‘orange peel’ and ‘fish-eye’!  To try to understand how these defects happen and – more important -- how to prevent them, carmaker General Motors and Canadian manufacturing giant Magna Corporation recently partnered with Professor Sanjeev  Chandra at the University of Toronto’s Mechanical Engineering department to find some answers.  Funding support came from Canada’s Natural Sciences and Engineering Research Council (NSERC) by way of a ‘Collaborative R&D’ grant.  Working together, the GM-Magna-U of T team prepared painted ‘coupons’ (small plates of freshly-painted sheet metal) and took videos of the paint drying under different temperature and humidity conditions.   The flow patterns in the drying paint samples were captured on video and then the video was used to generate a computer simulation of the drying process.  The end result?  A new computer-based tool that lets the companies predict the quality of the paint finish before it even gets sprayed on the vehicle.  Watching paint dry pays off! Queen’s University at Rogers K-ROCK Centre (10am – 3pm) Ever heard of ‘3D printing’?  In industry, it’s called ‘additive manufacturing’ and it’s rapidly changing the way that everything from aircraft engines to automobile parts to smartphones are made.  An Additive Manufacturing printer uses a computer-based ‘CAD’ drawing to guide a special laser beam as it scans over a bed of metal powder.  The laser beam fuses the metal powder, layer by layer, so that it ‘writes’ a 3D metal component.  Kingston and Queen’s are hotbeds of innovation for this laser-based manufacturing technology.  Starting back in 2014, Queen’s physics researcher Dr. James Fraser and local company Laser Depth Dynamics (itself born at Queen’s) have used funding support from NSERC to build an innovative research collaboration in this exciting area of technology. Come visit the Queen’s-Laser Depth Dynamics team at Science Rendezvous Kingston to learn more about how lasers are being used to turn piles of metal powder into complex parts that help products from smartphones to cars deliver better performance and offer great new features.  You’ll even be able to try your hand at being a laser physicist!  Visit Dr. Fraser and let him show you how to use a laser beam to measure the diameter of a single strand of your own hair! York University at Main Street Markham Farmers’ Market (10am – 3pm) Smartphones use all kinds of leading-edge technologies to help them deliver all the features and performance that users enjoy – and demand.  Like watching video content!  From anywhere!  Recent hardware developments in these mobile devices have created a demand for completely new video compression techniques with adjustable quality of services. When the receiver is a mobile user, the high bit-rate video data needs to be transcoded to a low bit-rate format that’s capable of being adjusted to the network and receiver’s specifications, while preserving the best possible video quality.  Working with funding support from Canada’s Natural Sciences and Engineering Council (NSERC), York University computer engineering researchers Dr. Aijin An and Dr. Amir Asif launched a long-term research collaboration with computing giant IBM Canada in 2014 to develop an innovative ‘transcoding’ video compression strategy capable of sustaining video delivery performance with certain immunity to the bandwidth fluctuations which occur in network connectivity.  So what, you ask?  Well, now you’ll be able to watch your favourite videos on your smartphone even while you’re out in the middle of the lake in your boat at the cottage! University of Saskatchewan- Canadian Light Source tours (7pm) Dr. Matthew Lindsay and his graduate students recently completed a study of metal leaching from oil sands petroleum coke, which is a major byproduct of bitumen upgrading at oil sands mines. Their research, with funding from NSERC, in partnership with Syncrude Canada Ltd. identified geochemical conditions under which potentially hazardous metals – nickel and vanadium – are leached into groundwater. These findings are helping Syncrude identify locations for storing petroleum coke within reclamation landscapes to reduce metal leaching. Dr. Lindsay has partnered with Syncrude on several other projects aimed at minimizing long-term impacts of mine wastes on water quality within reclamation landscapes.


News Article | April 17, 2017
Site: www.renewableenergyworld.com

The partnership between Manitoba Hydro and four First Nations via the Keeyask Hydropower Limited Partnership (KHLP) announced a significant increase in its control budget and a revised commissioning date for the 695-MW Keeyask Generating Station in a statement on March 7.  


News Article | May 5, 2017
Site: www.marketwired.com

BRANDON, MANITOBA--(Marketwired - 5 mai 2017) - Les travaux de construction d'un ensemble de 63 logements pour personnes âgées sont en cours à Brandon. L'ensemble offrira davantage d'options de logements aux aînés qui souhaitent vivre de façon autonome dans leur collectivité. Situé au 2105, avenue Brandon, l'ensemble est le résultat d'un partenariat entre les gouvernements fédéral, provincial et municipal et sa création a été annoncée par Terry Duguid, député de Winnipeg South, au nom de l'honorable Jean-Yves Duclos, ministre fédéral de la Famille, des Enfants et du Développement social, et l'honorable Scott Fielding, ministre de la Famille du Manitoba, en plus du maire de Brandon, Rick Chrest. « Le gouvernement du Canada contribue à donner accès au logement abordable à ceux qui en ont le plus besoin, tant au Manitoba que dans le reste du pays, a affirmé M. Duguid, député de Winnipeg South. Dans le cas du 2105, avenue Brandon, tous les paliers du gouvernement travaillent à la mise en œuvre de solutions locales à des problèmes de logements locaux et à répondre aux besoins des aînés en matière de logement afin qu'ils puissent continuer de vivre de façon autonome au sein de leur collectivité. » Les gouvernements du Canada et du Manitoba se sont engagés à consacrer plus de 3,1 millions de dollars à cet ensemble de 14 millions de dollars aux termes de la prolongation de l'Entente concernant l'Investissement dans le logement abordable (IDLA). Une fois achevé, cet immeuble de quatre étages offrira 48 logements abordables et 15 au prix courant à Brandon. Les locataires futurs pourront également jouir d'aires communes sur chaque étage, d'une aire de repos extérieure et d'un jardin commun. « Nous sommes fiers d'être un partenaire dans cette initiative et de nous assurer de pouvoir répondre aux besoins de logements à long terme des aînés qui veulent vivre à Brandon, a déclaré M. Fielding. Que les résidents aient accès à un logement sûr et abordable est une priorité de notre gouvernement. Le commencement des travaux constitue un jalon important pour les locataires futurs et pour nous tous qui reconnaissent l'importance du logement pour les individus, les familles et la collectivité. » Le gouvernement du Manitoba et la Ville de Brandon ont conclu un partenariat continu visant à créer des logements abordables dans la collectivité. La Ville a fourni gratuitement la propriété située au 2105, avenue Brandon, d'une valeur de 920 000 $ en plus d'autres formes de soutien se chiffrant à plus de 600 000 $. « Au nom de la Ville de Brandon et de l'ensemble du conseil municipal, je tiens à exprimer à quel point nous sommes heureux qu'un projet aussi utile soit en cours à Brandon, a déclaré le maire Rick Chrest. Non seulement cet ensemble permettra de répondre à la demande croissante de logements abordables pour aînés dans notre collectivité, mais il soutiendra aussi la vision de la ville qui est de créer des quartiers intégrés qui rassemblent des gens de tous les milieux, qui s'inscrivent dans notre souhait continu de maximiser l'utilisation des aménagements intercalaires développés et qui complémentent la priorité stratégique du conseil municipal, soit l'intégration communautaire. » À la suite d'une demande de propositions de la part de la Ville et de la Province en 2015, Western Manitoba Seniors Non-Profit Housing Co-op Ltd. (West-Man) a obtenu le mandat de construire et de gérer la propriété. Cet ensemble constitue la deuxième phase du travail de la coopérative dans la collectivité. Ils gèrent actuellement un ensemble de 34 logements abordables pour aînés sur McDiarmid Drive. « Notre coopérative aimerait remercier ses membres, ses partenaires, ses bénévoles, ses proches et tous les gens qui ont soutenu la Western Manitoba Seniors Non-Profit Housing Co-operative Ltd. pour leur vision et leur défense du logement pour les aînés, a indiqué Harvey Douglas, président du Comité pour l'expansion. Cette propriété a une signification spéciale pour ceux d'entre nous qui font partie de cette famille coopérative. Ensemble, nous avons créé un héritage de logements confortables et abordables pour aînés. Le montant de 2 millions de dollars de capital social fourni par nos membres a permis la création de cet ensemble de 14 millions de dollars ici, à Brandon. L'impact de notre héritage améliorera la vie des membres résidents en plus d'apporter des avantages à la collectivité à l'avenir. » La coopérative a été fondée en juillet 2009 afin de fournir des logements sûrs, confortables, abordables et accessibles aux aînés de Brandon. L'immeuble sera conforme aux normes de conception de logements visitables et accessibles du Manitoba et celles du programme Éconergique de Manitoba Hydro. On prévoit que la construction s'achèvera à l'été 2018. Les gouvernements du Canada et du Manitoba ont récemment annoncé un engagement accru dans le cadre de l'Entente concernant l'IDLA, représentant un investissement de près de 90 millions de dollars au cours des deux prochaines années. Ces fonds s'ajoutent au financement conjoint de 166 millions de dollars sur huit ans visant à contribuer à la production d'options de logements abordables supplémentaires au Manitoba. La Société canadienne d'hypothèques et de logement (SCHL) aide les Canadiens à répondre à leurs besoins en matière de logement depuis plus de 70 ans. En tant qu'autorité en matière d'habitation au Canada, elle contribue à la stabilité du marché de l'habitation et du système financier, elle vient en aide aux Canadiens dans le besoin et elle fournit des résultats de recherches et des conseils impartiaux aux gouvernements, aux consommateurs et au secteur de l'habitation du pays. La SCHL exerce ses activités en s'appuyant sur trois principes fondamentaux : gestion prudente des risques, solide gouvernance d'entreprise et transparence. Pour en savoir plus, composez le numéro sans frais 1-800-668-2642 ou consultez le site www.schl.ca. Pour en savoir plus sur les programmes de logement au Manitoba, visitez le site http://www.gov.mb.ca/housing/index.fr.html.


News Article | May 5, 2017
Site: www.marketwired.com

BRANDON, MANITOBA--(Marketwired - May 5, 2017) - Construction is underway on a new 63-unit seniors' property in Brandon, creating more housing options for seniors who wish to live independently in their community. The project, located at 2105 Brandon Ave., is the result of a partnership between the federal, provincial and municipal governments and was announced by Terry Duguid, Member of Parliament for Winnipeg South, on behalf of the Honourable Jean-Yves Duclos, Federal Minister of Families, Children and Social Development, along with Manitoba Families Minister Scott Fielding and City of Brandon Mayor Rick Chrest today. "The Government of Canada is helping to make affordable housing available in Manitoba and across the country for those who need it most," said Terry Duguid, Member of Parliament for Winnipeg South. "With 2105 Brandon Avenue, all levels of government are working to implement local solutions to local housing challenges and helping meet the needs of seniors, so that they can continue to live independently in their community." The Canada and Manitoba governments have committed to providing more than $3.1 million toward this $14 million project, with funding provided through the Investment in Affordable Housing (IAH) extension agreement. Once complete, this four-storey building will include 48 affordable housing units and 15 with rates set at market value for Brandon. Future tenants will also be able to enjoy common areas on each floor, an outdoor sitting area and a shared garden. "We are proud to partner on this initiative, ensuring we can meet the long-term housing needs of seniors who live or want to live in Brandon," said Fielding. "Access to safe, affordable housing is a priority of our government. The start of construction is a special milestone for future tenants, and for all of us who recognize the importance of housing to individuals, families and the community." The Manitoba government and the City of Brandon have an ongoing partnership to develop affordable housing in the community. The city has provided the property at 2105 Brandon Ave., valued at $920,000, at no cost and other support totaling more than $600,000. "On behalf of the City of Brandon and all of city council, I wish to express our sincere pleasure that such a worthwhile project is now underway in Brandon," said Mayor Rick Chrest. "Not only does this development work to meet the growing demand for affordable seniors' housing in our community, but it also supports the city's vision of creating integrated neighbourhoods that bring together people of diverse backgrounds, aligns with our continued desire to leverage infill development for its best use possible, and also complements this city council's strategic priority of community inclusion." The property is being developed and managed by Western Manitoba Seniors Non-Profit Housing Co-op Ltd. (West-Man), following a competitive call for proposals issued by the city and province in 2015. This project will be the second phase of the co-op's work in the community. They currently manage a 34-unit affordable seniors' housing property on McDiarmid Drive. "Our co-operative would like to give recognition of thanks to our members, supporters, volunteers, partners and loved ones of the Western Manitoba Seniors Non-Profit Housing Co-operative Ltd. for your foresight and advocacy for senior housing," said Harvey Douglas, expansion committee chairperson. "This property has special significance for all of us that are part of this cooperative family. Together, we created a legacy of safe, comfortable and affordable senior housing. Our $2 million share capital contributed by our members has created the possibility of this $14 million construction project here in Brandon. The impact of our legacy will not only improve the lives of member residents today but will continue to impact the community benefit into the future." The co-op was established in July 2009 to provide safe, comfortable, affordable and accessible housing for seniors in the City of Brandon. The building will meet Manitoba's visitable and accessible design standards and Manitoba Hydro's PowerSmart designation. The project is expected to be completed in summer 2018. The Canada and Manitoba governments recently announced an expanded commitment to the IAH agreement, representing almost $90 million over the next two years. The new funding is in addition to approximately $166 million in joint eight-year funding to help create more affordable housing options in Manitoba. The Canada Mortgage Housing Corporation (CMHC) has been helping Canadians meet their housing needs for more than 70 years. As Canada's authority on housing, CMHC contributes to the stability of the housing market and financial system, provides support for Canadians in housing need, and offers unbiased housing research and advice to Canadian governments, consumers and the housing industry. Prudent risk management, strong corporate governance and transparency are cornerstones of CMHC's operations. For more information, call toll-free 1-800-668-2642 or visit www.cmhc.ca. For more information about housing programs in Manitoba, visit www.gov.mb.ca/housing.


Patent
Manitoba Hydro and Chornoby | Date: 2016-01-20

A de-icing apparatus for a flexible conductor, for example a suspended power line, is supported for longitudinal displacement along the conductor. The apparatus has a frame, a motor driven wheel on the frame for rolling engagement along the conductor and at least one guide element supported on the frame so as to be arranged to engage the conductor so as to cause at least one flexion in the conductor when the frame is suspended from the conductor by engagement of the drive wheel and said at least guide element on the conductor. The propagation of the flexion along the conductor cause ice and snow collected on the conductor to be loosened and fall from the conductor.

Loading Manitoba Hydro collaborators
Loading Manitoba Hydro collaborators