Entity

Time filter

Source Type

Blantyre, Malawi

Chanda E.,Malaria Vector Control Consultant | Mzilahowa T.,Malaria Alert Center | Chipwanya J.,National Malaria Control Programme | Mulenga S.,National Malaria Control Programme | And 5 more authors.
Malaria Journal | Year: 2015

Background: In the past decade, there has been rapid scale-up of insecticide-based malaria vector control in the context of integrated vector management (IVM) according to World Health Organization recommendations. Endemic countries have deployed indoor residual spraying (IRS) and long-lasting insecticidal nets as hallmark vector control interventions. This paper discusses the successes and continued challenges and the way forward for the IRS programme in Malawi. Case description: The National Malaria Control Programme in Malawi, with its efforts to implement an integrated approach to malaria vector control, was the 'case' for this study. Information sources included all available data and accessible archived documentary records on IRS in Malawi. A methodical assessment of published and unpublished documents was conducted via a literature search of online electronic databases. Discussion: Malawi has implemented IRS as the main malaria transmission-reducing intervention. However, pyrethroid and carbamate resistance in malaria vectors has been detected extensively across the country and has adversely affected the IRS programme. Additionally, IRS activities have been characterized by substantial inherent logistical and technical challenges culminating into missed targets. As a consequence, programmatic IRS operations have been scaled down from seven districts in 2010 to only one district in 2014. The future of the IRS programme in Malawi is uncertain due to limited funding, high cost of alternative insecticides and technical resource challenges being experienced in the country. Conclusions: The availability of a long-lasting formulation of the organophosphate pirimiphos-methyl makes the re-introduction of IRS a possibility and may be a useful approach for the management of pyrethroid resistance. Implementing the IVM strategy, advocating for sustainable domestic funding, including developing an insecticide resistance monitoring and management plan and vector surveillance guidelines will be pivotal in steering entomologic monitoring and future vector control activities in Malawi. © 2015 Chanda et al. Source


Chanda E.,National Malaria Control Center | Mzilahowa T.,Malaria Alert Center | Cuamba N.,National Institute of Health
BMC Genomics | Year: 2014

Background: Pyrethroid resistance in the major malaria vector Anopheles funestus is rapidly expanding across Southern Africa. It remains unknown whether this resistance has a unique origin with the same molecular basis or is multifactorial. Knowledge of the origin, mechanisms and evolution of resistance are crucial to designing successful resistance management strategies. Results: Here, we established the resistance profile of a Zambian An. funestus population at the northern range of the resistance front. Similar to other Southern African populations, Zambian An. funestus mosquitoes are resistant to pyrethroids and carbamate, but in contrast to populations in Mozambique and Malawi, these insects are also DDT resistant. Genome-wide microarray-based transcriptional profiling and qRT-PCR revealed that the cytochrome P450 gene CYP6M7 is responsible for extending pyrethroid resistance northwards. Indeed, CYP6M7 is more over-expressed in Zambia [fold-change (FC) 37.7; 13.2 for qRT-PCR] than CYP6P9a (FC15.6; 8.9 for qRT-PCR) and CYP6P9b (FC11.9; 6.5 for qRT-PCR), whereas CYP6P9a and CYP6P9b are more highly over-expressed in Malawi and Mozambique. Transgenic expression of CYP6M7 in Drosophila melanogaster coupled with in vitro assays using recombinant enzymes and assessments of kinetic properties demonstrated that CYP6M7 is as efficient as CYP6P9a and CYP6P9b in conferring pyrethroid resistance. Polymorphism patterns demonstrate that these genes are under contrasting selection forces: the exceptionally diverse CYP6M7 likely evolves neutrally, whereas CYP6P9a and CYP6P9b are directionally selected. The higher variability of CYP6P9a and CYP6P9b observed in Zambia supports their lesser role in resistance in this country.Conclusion: Pyrethroid resistance in Southern Africa probably has multiple origins under different evolutionary forces, which may necessitate the design of different resistance management strategies. © 2014 Riveron et al.; licensee BioMed Central Ltd. Source


Chanda E.,Malaria Vector Control Consultant | Mzilahowa T.,Malaria Alert Center | Chipwanya J.,Ministry of Health | Mulenga S.,Ministry of Health | And 5 more authors.
Malaria Journal | Year: 2015

Background: In the past decade, there has been rapid scale-up of insecticide-based malaria vector control in the context of integrated vector management (IVM) according to World Health Organization recommendations. Endemic countries have deployed indoor residual spraying (IRS) and long-lasting insecticidal nets as hallmark vector control interventions. This paper discusses the successes and continued challenges and the way forward for the IRS programme in Malawi. Case description: The National Malaria Control Programme in Malawi, with its efforts to implement an integrated approach to malaria vector control, was the 'case' for this study. Information sources included all available data and accessible archived documentary records on IRS in Malawi. A methodical assessment of published and unpublished documents was conducted via a literature search of online electronic databases. Discussion: Malawi has implemented IRS as the main malaria transmission-reducing intervention. However, pyrethroid and carbamate resistance in malaria vectors has been detected extensively across the country and has adversely affected the IRS programme. Additionally, IRS activities have been characterized by substantial inherent logistical and technical challenges culminating into missed targets. As a consequence, programmatic IRS operations have been scaled down from seven districts in 2010 to only one district in 2014. The future of the IRS programme in Malawi is uncertain due to limited funding, high cost of alternative insecticides and technical resource challenges being experienced in the country. Conclusions: The availability of a long-lasting formulation of the organophosphate pirimiphos-methyl makes the re-introduction of IRS a possibility and may be a useful approach for the management of pyrethroid resistance. Implementing the IVM strategy, advocating for sustainable domestic funding, including developing an insecticide resistance monitoring and management plan and vector surveillance guidelines will be pivotal in steering entomologic monitoring and future vector control activities in Malawi. © 2015 Chanda et al. Source


Stanton M.C.,Center for Neglected Tropical Diseases | Mkwanda S.,Ministry of Health | Mzilahowa T.,Malaria Alert Center | Bockarie M.J.,Center for Neglected Tropical Diseases | Kelly-Hope L.A.,Center for Neglected Tropical Diseases
Tropical Medicine and International Health | Year: 2014

Objective: To quantify the geographical extent of filariasis and malaria control interventions impacting lymphatic filariasis (LF) in Malawi and to produce a multiple intervention score map (MISM) for prioritising surveillance and intervention strategies. Methods: Interventions included mass drug administration (MDA) for LF and onchocerciasis, and bed nets and indoor residual spraying (IRS) for malaria. District and subdistrict-level data were obtained from the Ministry of Health in Malawi, the Demographic and Health Survey (DHS) and President's Malaria Initiative reports. Single intervention scores were calculated for each variable based on population coverage thresholds, and these were combined in a weighted sum to form a multiple intervention score, which was then used to produce maps, that is MISMs. Districts were further classified into four groups based on the combination of their baseline LF prevalence and multiple intervention score. Results: The district- and subdistrict-level MISMs highlighted specific areas that have received high and low coverage of LF-impacting interventions. High coverage areas included the LF-onchocerciasis endemic areas in the southern region of the country and areas along the shores of Lake Malawi, where malaria vector control had been prioritised. Three districts with high baseline LF prevalence measures but low coverage of multiple interventions were identified and considered to be most at risk of ongoing transmission or re-emergence. Conclusions: These maps and district classifications will be used by LF programme managers to identify and target high-risk areas that may not have received adequate LF-impacting interventions to interrupt the transmission of the disease. © 2014 John Wiley & Sons Ltd. Source


Mathanga D.,Malaria Alert Center | Witte D.,University of Liverpool
Archives of Disease in Childhood | Year: 2012

Clinical trials in children in resource-poor environments are essential for local health policy and practice to be relevant and evidence based. Research must be ethical, appropriate, relevant and of good quality. It should, where possible, benefit the subjects studied,the clinical, scientific and support staff involved, and the service and academic institutions of the host country. The challenge for researchers and their sponsors is to maximise such benefits while avoiding the many possible pitfalls. Source

Discover hidden collaborations