Fort Lauderdale, FL, United States
Fort Lauderdale, FL, United States
SEARCH FILTERS
Time filter
Source Type

Patent
MAKO Surgical | Date: 2017-04-05

A joint distraction lever for measuring a distraction force is disclosed. The joint distraction lever includes a lever body having a handle portion and a working portion. The lever body has a fulcrum extending from a bottom surface of the working portion of the lever body and a distal tip, wherein the distal tip is raised above a top surface of the working portion of the lever body. The joint distraction lever is configured to measure a distraction force applied at the distal tip during a distraction procedure when a torque is applied by an external force applied on the handle portion of the lever body. The joint distraction lever further includes an indicator configured to provide feedback related to the distraction force applied at the distal tip, as measured by the joint distraction lever.


Patent
MAKO Surgical | Date: 2017-04-07

A robotic surgery method includes coupling a first element of a fluoroscopic imaging system to a first robotic arm fixed relative to an operating room. The first robotic arm includes a mounting fixture configured to be interchangeably coupled to a surgical tool and the first element of the fluoroscopic imaging system. The method further includes mounting a second element of the fluoroscopic imaging system in a position and orientation relative to the first element such that a targeted patient tissue structure may be positioned there between. The method further includes utilizing a sensing system and one or more sensing elements coupled to each of the first and second elements of the imaging system to determine a relative spatial positioning between each of the first and second elements of the fluoroscopic imaging system. The first and second elements of the fluoroscopic imaging system are a source element and a detector element.


Patent
MAKO Surgical | Date: 2017-02-13

The invention generally pertains to a combination of a surgical with a computer-assisted surgery system. The surgical tool may be used as an input device, allowing information to pass from the user to the computer-assisted surgery system, and providing functionality similar to common user interface devices, such as a mouse or any other input device. When used as an input device, it may be used for defining anatomical reference geometry, manipulating the position and/or orientation of virtual implants, manipulating the position and/or orientation of surgical approach trajectories, manipulating the positions and/or orientation of bone resections, and the selection or placement of any other anatomical or surgical feature.


Patent
MAKO Surgical | Date: 2016-09-02

A portable surgical robot includes a surgical device and a cart. The surgical device is coupled to the cart. The cart includes a chassis, a mount coupled to the chassis, a carriage pivotally coupled to the mount, and a set of wheels. The carriage includes a first bracket positioned at a first lateral end of the carriage and a second bracket positioned at a second lateral end of the carriage. A first wheel of the set of wheels is coupled to the first bracket and a second wheel of the set of wheels is coupled to the second bracket. The carriage is configured to pivot relative to the mount to prevent at least one of (i) rocking of the portable surgical robot, (ii) fluttering of the first wheel, (iii) fluttering of the second wheel, and (iv) tipping of the portable surgical robot.


Patent
MAKO Surgical | Date: 2016-09-02

A portable surgical robot includes a surgical device and a cart. The surgical device is coupled to the cart. The cart includes a chassis, a frame member, a pair of wheels, and a steering mechanism. The chassis defines a longitudinal axis that extends a length of the cart. The frame member is coupled to the chassis of the cart. The pair of wheels are pivotably coupled to the frame member. The steering mechanism is coupled to the pair of wheels. The steering mechanism is configured to facilitate selectively pivoting the pair of wheels to steer the cart in a plurality of steering modes. The plurality of steering modes include at least one of a fore-and-aft steering mode, a turn-on-axis steering mode, and a lateral steering mode.


Patent
MAKO Surgical | Date: 2016-08-29

An implant providing for both short and long term stability and fixation is disclosed. The implant includes a plurality of projections extending from a bone contacting surface, and a porous material covering at least portions of the surface and projections. The orientation of the projections and the porous material provide for the stability and fixation. Methods of forming and utilizing the implant are also disclosed.


A system for providing substantially stable control of a surgical instrument is provided. The system includes a surgical manipulator for manipulating the surgical instrument and at least one computer configured to identify a first subset and a second subset of interaction geometric primitives associated with a virtual tool; determine, based on the first subset, control forces in a first subspace; and determine based on the second subset, control forces in a second subspace having at least one additional dimension. Control forces in the additional dimension are only determined based on the second subset of primitives, which is different than the first subset of primitives. The computer is further configured to determine a torque to constrain an orientation of the surgical instrument, wherein determining the torque comprises defining a virtual tool normal and a control plane normal and using the virtual tool normal and control plane normal to calculate the torque.


A method for customizing an interactive control boundary based on a patient-specific anatomy includes obtaining a standard control boundary and determining an intersection between a reference feature associated with the standard control boundary and a virtual representation of an anatomy of the patient. The method further includes identifying an anatomic perimeter at the intersection between the identified reference feature and the virtual representation of the anatomy. An anatomic feature on the virtual representation of the anatomy is determined from the intersection of the reference feature and the virtual representation of the anatomy. The standard control boundary is modified based on at least one anatomic feature to generate a customized control boundary.


Patent
MAKO Surgical | Date: 2017-01-17

A robotic surgery method for cutting a bone of a patient includes characterizing the geometry and positioning of the bone and manually moving a handheld manipulator, the handheld manipulator operatively coupled to a bone cutting tool having an end effector portion, to cut a portion of the bone with the end effector portion. The handheld manipulator further comprises a manipulator housing and an actuator assembly movably coupled between the manipulator housing and the bone cutting tool. The method further includes causing the actuator assembly to automatically move relative to the manipulator housing to maintain the end effector portion of the tool within a desired bone cutting envelope in response to movement of the manipulator housing relative to the bone.


Patent
MAKO Surgical | Date: 2017-04-19

A tool and method for operating the tool are provided. The tool includes a housing and a power generator, such as a motor, disposed in the housing. The power generator has an operating parameter, such as rotational speed. A trigger member and associated magnet are displaceable relative to the housing. A plurality of sensors each generate an output signal based on movement of the magnet. A controller receives the output signals from the sensors, determines a base digital integer from each of the output signals, concatenates the base digital integers to form a concatenated digital integer. The controller varies the operating parameter based on the concatenated digital integer.

Loading MAKO Surgical collaborators
Loading MAKO Surgical collaborators