Main Astronomical Observatory NAS

Kiev, Ukraine

Main Astronomical Observatory NAS

Kiev, Ukraine

Time filter

Source Type

Korablev O.,Moscow Institute of Physics and Technology | Grigoriev A.V.,Space Research Institute IKI | Trokhimovsky A.,Moscow Institute of Physics and Technology | Ivanov Y.S.,Main Astronomical Observatory NAS | And 5 more authors.
Proceedings of SPIE - The International Society for Optical Engineering | Year: 2013

The ACS package for ExoMars Trace Gas Orbiter is a part of Russian contribution to ExoMars ESA-Roscosmos mission. On the Orbiter it complements NOMAD investigation and is intended to recover in much extent the science lost with the cancellation of NASA MATMOS and EMCS infrared sounders. ACS includes three separate spectrometers, sharing common mechanical, electrical, and thermal interfaces. NIR is a versatile spectrometer for the spectral range of 0.7-1.6 μm with resolving power of ∼20000. It is conceived on the principle of RUSALKA/ISS or SOIR/Venus Express experiments combining an echelle spectrometer and an AOTF (Acousto-Optical Tuneable Filter) for order selection. Up to 8 diffraction orders, each 10-20 nm wide can be measured in one sequence record. NIR will be operated principally in nadir, but also in solar occultations, and possibly on the limb. MIR is a high-resolution echelle instrument exclusively dedicated to solar occultation measurements in the range of 2.2-4.4 μm targeting the resolving power of 50000. The order separation is done by means of a steerable grating cross-disperser, allowing instantaneous coverage of up to 300-nm range of the spectrum for one or two records per second. MIR is dedicated to sensitive measurements of trace gases, approaching MATMOS detection thresholds for many species. TIRVIM is a 2- inch double pendulum Fourier-transform spectrometer for the spectral range of 1.7-17 μm with apodized resolution varying from 0.2 to 1.6 cm-1. TIRVIM is primarily dedicated to monitoring of atmospheric temperature and aerosol state in nadir, and would contribute in solar occultation to detection/reducing of upper limits of some components absorbing beyond 4 μm, complementing MIR and NOMAD. Additionally, TIRVIM targets the methane mapping in nadir, using separate detector optimized for 3.3-μm range. The concept of the instrument and in more detail the optical design and the expected parameters of its three parts, channel by channel are described. © 2013 Copyright SPIE.


Korablev O.,Moscow Institute of Physics and Technology | Trokhimovsky A.,Moscow Institute of Physics and Technology | Grigoriev A.V.,Space Research Institute IKI | Shakun A.,Moscow Institute of Physics and Technology | And 7 more authors.
Journal of Applied Remote Sensing | Year: 2014

The atmospheric chemistry suite (ACS) package is a part of the Russian contribution to the ExoMars ESA-Roscosmos mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. The near-infrared (NIR) channel is a versatile spectrometer for the spectral range of 0.7-1.6 μ m with a resolving power of ~20;000. The instrument employs the principle of an echelle spectrometer with an acoustooptical tunable filter (AOTF) as a preselector. NIR will be operated in nadir, in solar occultations, and possibly on the limb. Scientific targets of NIR are the measurements of water vapor, aerosols, and dayside or nightside airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the range of 2.2-4.4 μ m targeting the resolving power of 50,000. MIR is dedicated to sensitive measurements of trace gases. The thermal infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer for the spectral range of 1.7-17 μ m with apodized resolution varying from 0.2 to 1.6 cm-1. TIRVIM is primarily dedicated to the monitoring of atmospheric temperatures and aerosol states in nadir. The present paper describes the concept of the instrument, and in more detail, the optical design and the expected parameters of its three parts channel by channel. © 2014 Society of Photo-Optical Instrumentation Engineers.


Trokhimovskiy A.,Space Research Institute IKI | Korablev O.,Moscow Institute of Physics and Technology | Ivanov Y.S.,Main Astronomical Observatory NAS | Siniyavsky I.I.,Main Astronomical Observatory NAS | And 7 more authors.
Proceedings of SPIE - The International Society for Optical Engineering | Year: 2015

The middle-infrared (MIR) echelle spectrometer is one channel of the Atmospheric Chemistry Suite (ACS) package dedicated for the studies of the Martian atmosphere on board ExoMars Trace Gas Orbiter (TGO) planned for launch in 2016. The MIR channel of ACS is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the range of 2.3-4.2 μm with the resolving power of ∼50,000. MIR is dedicated to sensitive measurements of trace gases. The MIR channel consists of entry optics, an echelle spectrometer with a 140x250 mm grating and two-mirror collimator, two secondary steerable gratings, and a cryogenically cooled MCT detector array with proximity optics. The spectrometer operates in high orders of diffraction, allowing to acquire up to 17 orders at one detector frame, and to cover simultaneously ∼300-nm spectral interval within the spectral range. The mechanism allows moving the secondary grating with a characteristic time of ∼0.1 s. This concept is novel for space application. The instrument is a complete block with power and data interfaces, and the overall mass of 12 kg. The protoflight model of MIR is completed, integrated within the ACS suite, and is undergoing tests at the spacecraft. © 2015 SPIE.

Loading Main Astronomical Observatory NAS collaborators
Loading Main Astronomical Observatory NAS collaborators