Yavne, Israel

Magic Technologies

magic-tec.com/
Yavne, Israel
SEARCH FILTERS
Time filter
Source Type

Patent
Ibm and Magic Technologies | Date: 2013-05-04

An array of rows and columns of SMT MRAM cells has each of the columns associated with one of its adjacent columns. Each of the SMT MRAM cells of the column is connected to a true data bit line and each of the SMT MRAM cells of the associated pair of columns is connected to a shared complement data bit line. A shunting switch device is connected between each of the true data bit lines and the shared complement data bit line for selectively connecting one of the true data bit lines to the shared complement data bit line to effectively reduce the resistance of the complement data bit line and to eliminate program disturb effects in adjacent non-selected columns of the SMT MRAM cells.


A magnetic element is disclosed that has a composite free layer with a FM1/moment diluting/FM2 configuration wherein FM1 and FM2 are magnetic layers made of one or more of Co, Fe, Ni, and B and the moment diluting layer is used to reduce the perpendicular demagnetizing field. As a result, lower resistance x area product and higher thermal stability are realized when perpendicular surface anisotropy dominates shape anisotropy to give a magnetization perpendicular to the planes of the FM1, FM2 layers. The moment diluting layer may be a non-magnetic metal like Ta or a CoFe alloy with a doped non-magnetic metal. A perpendicular Hk enhancing layer interfaces with the FM2 layer and may be an oxide to increase the perpendicular anisotropy field in the FM2 layer. A method for forming the magnetic element is also provided.


Patent
Magic Technologies | Date: 2013-12-25

A magnetic field sensor having a domain stable free layer, comprising:an antiferromagnetic layer on a lower conductive layer;a pinned magnetic reference layer, having a magnetization direction, on said antiferromagnetic layer;a separation layer on said magnetic reference layer;a magnetic free layer on said separation layer;a capping layer on said magnetic free layer;said magnetic reference, separation, free, and capping layers having the form of a plurality of independent sensor stacks, each such stack having, in plan view, a width dimension along a first axis and a length dimension along a second axis, with a length-to-width ratio sufficient to support an anisotropy field, and a length dimension no greater than a domain wall width and perpendicular to said pinned magnetization direction whereby all free layers of said sensor stacks are domain stable when exposed to a magnetic field;said lower conductive layer having the form of a bottom electrode that is common to all said sensor stacks;a dielectric layer that fills all space between said sensor stacks, including covering all sidewalls; anda top electrode that contacts said capping layer whereby it is common to all said sensor stacks.


A method for forming a MTJ in a spintronic device is disclosed and includes a thin seed layer that enhances perpendicular magnetic anisotropy (PMA) in an overlying laminated layer with a (Co/Ni)_(n )composition. The seed layer is preferably NiCr, NiFeCr, Hf, or a composite thereof. Furthermore, a magnetic layer such as CoFeB may be formed between the laminated layer and a tunnel barrier layer to serve as a transitional layer between a (111) laminate and (100) MgO tunnel barrier. There may be a Ta insertion layer between the CoFeB layer and laminated layer to promote (100) crystallization in the CoFeB layer. The laminated layer may be used as a reference layer, dipole layer, or free layer in a MTJ. Annealing between 300 C. and 400 C. may be used to further enhance PMA in the laminated layer.


A STT-RAM MTJ that minimizes spin-transfer magnetization switching current (Jc) is disclosed. The MTJ has a MgO tunnel barrier layer formed with a natural oxidation process to achieve a low RA (10 ohm-um^(2)) and a Fe or Fe/CoFeB/Fe free layer which provides a lower intrinsic damping constant than a CoFeB free layer. A Fe, FeB, or Fe/CoFeB/Fe free layer when formed with a MgO tunnel barrier (radical oxidation process) and a CoFeB AP1 pinned layer in a MRAM MTJ stack annealed at 360 C. provides a high dR/R (TMR)>100% and a substantial improvement in read margin with a TMR/Rp_cov=20. High speed measurement of 100 nm200 nm oval STT-RAM MTJs has shown a J_(c0 )for switching a Fe free layer is one half that for switching an amorphous Co_(40)Fe_(40)B_(20 )free layer. A Fe/CoFeB/Fe free layer configuration allows the Hc value to be increased for STT-RAM applications.


A MTJ for a spintronic device is disclosed and includes a thin seed layer that enhances perpendicular magnetic anisotropy (PMA) in an overlying laminated layer with a (Co/Ni)_(n )composition or the like where n is from 2 to 30. The seed layer is preferably NiCr, NiFeCr, Hf, or a composite thereof with a thickness from 10 to 100 Angstroms. Furthermore, a magnetic layer such as CoFeB may be formed between the laminated layer and a tunnel barrier layer to serve as a transitional layer between a (111) laminate and (100) MgO tunnel barrier. There may be a Ta insertion layer between the CoFeB layer and laminated layer to promote (100) crystallization in the CoFeB layer. The laminated layer may be used as a reference layer, dipole layer, or free layer in a MTJ. Annealing between 300 C. and 400 C. may be used to further enhance PMA in the laminated layer.


A STT-RAM MTJ is disclosed with a MgO tunnel barrier formed by natural oxidation and containing an oxygen surfactant layer to form a more uniform MgO layer and lower breakdown distribution percent. A CoFeB/NCC/CoFeB composite free layer with a middle nanocurrent channel layer minimizes Jc_(0 )while enabling thermal stability, write voltage, read voltage, and Hc values that satisfy 64 Mb design requirements. The NCC layer has RM grains in an insulator matrix where R is Co, Fe, or Ni, and M is a metal such as Si or Al. NCC thickness is maintained around the minimum RM grain size to avoid RM granules not having sufficient diameter to bridge the distance between upper and lower CoFeB layers. A second NCC layer and third CoFeB layer may be included in the free layer or a second NCC layer may be inserted below the Ru capping layer.


Patent
Ibm and Magic Technologies | Date: 2013-05-04

An array of rows and columns of SMT MRAM cells has each of the columns associated with one of its adjacent columns. Each of the SMT MRAM cells of the column is connected to a true data bit line and each of the SMT MRAM cells of the associated pair of columns is connected to a shared complement data bit line. A shunting switch device is connected between each of the true data bit lines and the shared complement data bit line for selectively connecting one of the true data bit lines to the shared complement data bit line to effectively reduce the resistance of the complement data bit line and to eliminate program disturb effects in adjacent non-selected columns of the SMT MRAM cells.


Patent
Ibm and Magic Technologies | Date: 2013-05-04

An array of rows and columns of SMT MRAM cells has each of the columns associated with one of its adjacent columns. Each of the SMT MRAM cells of the column is connected to a true data bit line and each of the SMT MRAM cells of the associated pair of columns is connected to a shared complement data bit line. A shunting switch device is connected between each of the true data bit lines and the shared complement data bit line for selectively connecting one of the true data bit lines to the shared complement data bit line to effectively reduce the resistance of the complement data bit line and to eliminate program disturb effects in adjacent non-selected columns of the SMT MRAM cells.


Patent
Magic Technologies | Date: 2013-12-25

A method to measure an electric current, comprising:providing a pair of conductive wires having corresponding first and second ends, said pair of wires being disposed so as to be equidistant over their full extents, said corresponding first ends being electrically connected to each other;placing, on each of said wires, a magnetic sensor having top and bottom leads between which a voltage drop occurs in the presence of a magnetic field, each such sensor having a free layer that further comprises a plurality of ferromagnetic elements and a reference layer that further comprises a plurality of ferromagnetic elements having pinned magnetizations, each of said elements having, in plan view, an aspect ratio of at least 1.2 and a length dimension of at most 1 micron whereby each such free layer is domain stable in the presence of a magnetic field, each of said pinned magnetizations being in a direction that is perpendicular to said length direction;passing said current between said corresponding second ends, thereby generating a magnetic field whose direction is different relative to each of the sensors whereby said sensors generate voltage drops whose magnitudes differ from one another;measuring said difference in magnitude between said voltage drops; andthereby deriving a value for said electric current.

Loading Magic Technologies collaborators
Loading Magic Technologies collaborators