Entity

Time filter

Source Type


Singh S.K.,Montana State University | Singh S.K.,Macsagharkar Research Institute | Strobel G.A.,Montana State University | Knighton B.,Montana State University | And 3 more authors.
Microbial Ecology | Year: 2011

An unusual Phomopsis sp. was isolated as endophyte of Odontoglossum sp. (Orchidaceae), associated with a cloud forest in Northern Ecuador. This fungus produces a unique mixture of volatile organic compounds (VOCs) including sabinene (a monoterpene with a peppery odor) only previously known from higher plants. In addition, some of the other more abundant VOCs recorded by GC/MS in this organism were 1-butanol, 3-methyl; benzeneethanol; 1-propanol, 2-methyl and 2-propanone. The gases of Phomopsis sp. possess antifungal properties and an artificial mixture of the VOCs mimicked the antibiotic effects of this organism with the greatest bioactivity against a wide range of plant pathogenic test fungi including: Pythium, Phytophthora, Sclerotinia, Rhizoctonia, Fusarium, Botrytis, Verticillium, and Colletotrichum. The IC50 values for the artificial gas mixture of Phomopsis sp. varied between 8 and 25.65 μl/mL. Proton transfer reaction-mass spectrometry monitored the concentration of VOCs emitted by Phomopsis sp. and yielded a total VOC concentration of ca. 18 ppmv in the head space at the seventh day of incubation at 23°C on PDA. As with many VOC-producing endophytes, this Phomopsis sp. did survive and grow in the presence of the inhibitory gases of Muscodor albus. A discussion is presented on the possible involvement of VOC production by the fungus and its role in the biology/ecology of the fungus/plant/environmental relationship. © 2011 Springer Science+Business Media, LLC. Source


Strobel G.,Montana State University | Singh S.K.,Montana State University | Singh S.K.,Macsagharkar Research Institute | Riyaz-Ul-Hassan S.,Montana State University | And 3 more authors.
FEMS Microbiology Letters | Year: 2011

A Phoma sp. was isolated and characterized as endophytic and as a pathogen of Larrea tridentata (creosote bush) growing in the desert region of southern Utah, USA. This fungus produces a unique mixture of volatile organic compounds (VOCs), including a series of sesquiterpenoids, some alcohols and several reduced naphthalene derivatives. Trans-caryophyllene, a product in the fungal VOCs, was also noted in the VOCs of this pungent plant. The gases of Phoma sp. possess antifungal properties and is markedly similar to that of a methanolic extract of the host plant. Some of the test organisms with the greatest sensitivity to the Phoma sp. VOCs were Verticillium, Ceratocystis, Cercospora and Sclerotinia while those being the least sensitive were Trichoderma, Colletotrichum and Aspergillus. We discuss the possible involvement of VOC production by the fungus and its role in the biology/ecology of the fungus/plant/environmental relationship with implications for utilization as an energy source. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. Source


Senthilarasu G.,Macsagharkar Research Institute | Kumaresan V.,Mahatma Gandhi Government Arts College | Singh S.K.,Macsagharkar Research Institute
Mycotaxon | Year: 2010

A new species, Entoloma vittalii (sect. Cyanula, subg. Leptonia, Entolomataceae), collected from paleotropical regions of the Uppangala forest, Western Ghats, Karnataka, is described and illustrated. Macro- and microscopic differences and similarities are compared with closely related taxa. © 2010. Mycotaxon, Ltd. Source


Chakraborty D.,Cryptogamic Unit | Das K.,Cryptogamic Unit | Baghela A.,Macsagharkar Research Institute | Singh S.K.,Macsagharkar Research Institute | And 2 more authors.
Phytotaxa | Year: 2015

Boletus recapitulatus, collected from subtropical forest in the east District of Sikkim (India) is proposed here as new to science. It is characterized by its peculiar mushroom-shaped terminal cells of hyphae in the pileus and stipe cuticles. A detailed morphological description and illustrations are provided. besides morphological features phylogenetic analysis of Its region is also used to separate the allied Asian and extralimital taxa. © 2015 Magnolia Press. Source


Li G.J.,CAS Institute of Microbiology | Hyde K.D.,Mae Fah Luang University | Hyde K.D.,CAS Kunming Institute of Botany | Hyde K.D.,King Saud University | And 173 more authors.
Fungal Diversity | Year: 2016

Notes on 113 fungal taxa are compiled in this paper, including 11 new genera, 89 new species, one new subspecies, three new combinations and seven reference specimens. A wide geographic and taxonomic range of fungal taxa are detailed. In the Ascomycota the new genera Angustospora (Testudinaceae), Camporesia (Xylariaceae), Clematidis, Crassiparies (Pleosporales genera incertae sedis), Farasanispora, Longiostiolum (Pleosporales genera incertae sedis), Multilocularia (Parabambusicolaceae), Neophaeocryptopus (Dothideaceae), Parameliola (Pleosporales genera incertae sedis), and Towyspora (Lentitheciaceae) are introduced. Newly introduced species are Angustospora nilensis, Aniptodera aquibella, Annulohypoxylon albidiscum, Astrocystis thailandica, Camporesia sambuci, Clematidis italica, Colletotrichum menispermi, C. quinquefoliae, Comoclathris pimpinellae, Crassiparies quadrisporus, Cytospora salicicola, Diatrype thailandica, Dothiorella rhamni, Durotheca macrostroma, Farasanispora avicenniae, Halorosellinia rhizophorae, Humicola koreana, Hypoxylon lilloi, Kirschsteiniothelia tectonae, Lindgomyces okinawaensis, Longiostiolum tectonae, Lophiostoma pseudoarmatisporum, Moelleriella phukhiaoensis, M. pongdueatensis, Mucoharknessia anthoxanthi, Multilocularia bambusae, Multiseptospora thysanolaenae, Neophaeocryptopus cytisi, Ocellularia arachchigei, O. ratnapurensis, Ochronectria thailandica, Ophiocordyceps karstii, Parameliola acaciae, P. dimocarpi, Parastagonospora cumpignensis, Pseudodidymosphaeria phlei, Polyplosphaeria thailandica, Pseudolachnella brevifusiformis, Psiloglonium macrosporum, Rhabdodiscus albodenticulatus, Rosellinia chiangmaiensis, Saccothecium rubi, Seimatosporium pseudocornii, S. pseudorosae, Sigarispora ononidis and Towyspora aestuari. New combinations are provided for Eutiarosporella dactylidis (sexual morph described and illustrated) and Pseudocamarosporium pini. Descriptions, illustrations and / or reference specimens are designated for Aposphaeria corallinolutea, Cryptovalsa ampelina, Dothiorella vidmadera, Ophiocordyceps formosana, Petrakia echinata, Phragmoporthe conformis and Pseudocamarosporium pini. The new species of Basidiomycota are Agaricus coccyginus, A. luteofibrillosus, Amanita atrobrunnea, A. digitosa, A. gleocystidiosa, A. pyriformis, A. strobilipes, Bondarzewia tibetica, Cortinarius albosericeus, C. badioflavidus, C. dentigratus, C. duboisensis, C. fragrantissimus, C. roseobasilis, C. vinaceobrunneus, C. vinaceogrisescens, C. wahkiacus, Cyanoboletus hymenoglutinosus, Fomitiporia atlantica, F. subtilissima, Ganoderma wuzhishanensis, Inonotus shoreicola, Lactifluus armeniacus, L. ramipilosus, Leccinum indoaurantiacum, Musumecia alpina, M. sardoa, Russula amethystina subp. tengii and R. wangii are introduced. Descriptions, illustrations, notes and / or reference specimens are designated for Clarkeinda trachodes, Dentocorticium ussuricum, Galzinia longibasidia, Lentinus stuppeus and Leptocorticium tenellum. The other new genera, species new combinations are Anaeromyces robustus, Neocallimastix californiae and Piromyces finnis from Neocallimastigomycota, Phytophthora estuarina, P. rhizophorae, Salispina, S. intermedia, S. lobata and S. spinosa from Oomycota, and Absidia stercoraria, Gongronella orasabula, Mortierella calciphila, Mucor caatinguensis, M. koreanus, M. merdicola and Rhizopus koreanus in Zygomycota. © 2016, School of Science. Source

Discover hidden collaborations