Rockville, MD, United States
Rockville, MD, United States
SEARCH FILTERS
Time filter
Source Type

The present invention relates to CD3-binding molecules capable of binding to human and non-human CD3, and in particular to such molecules that are cross-reactive with CD3 of a non-human mammal (e.g., a cynomolgus monkey). The invention also pertains to uses of such antibodies and antigen-binding fragments in the treatment of cancer, autoimmune and/or inflammatory diseases and other conditions.


The present invention is directed to bi-specific diabodies that comprise two or more polypeptide chains and which possess at least one Epitope-Binding Site that is immunospecific for an epitope of PD-1 and at least one Epitope-Binding Site that is immunospecific for an epitope of LAG-3 (i.e., a PD-I x LAG-3 bi-specific diabody). More preferably, the present invention is directed to bi-specific diabodies that comprise four polypeptide chains and which possess two Epitope-Binding Sites that are immunospecific for one (or two) epitope(s) of PD-1 and two Epitope-Binding Site that are immunospecific for one (or two) epitope(s) of LAG-3 (i.e., a PD-1 x LAG-3 bi-specific, tetra-valent diabody).


The present invention relates to Tri-Specific Binding Molecules, which are multi-chain polypeptide molecules that possess three Binding Domains and are thus capable of mediating coordinated binding to three epitopes. The Tri-Specific Binding Molecule is preferably characterized in possessing binding domains that permit it to immunospecifically bind to: (1) an epitope of a first Cancer Antigen, (2) an epitope of a second Cancer Antigen, and (3) an epitope of a molecule that is expressed on the surface of an immune system effector cell, and are thus capable of localizing an immune system effector cell to a cell that expresses a Cancer Antigen, so as to thereby facilitate the killing of such cancer cell.


Patent
MacroGenics | Date: 2016-09-15

This invention relates to antibodies that specifically bind HER2/neu, and particularly chimeric 4D5 antibodies to HER2/neu, which have reduced glycosylation as compared to known 4D5 antibodies. The invention also relates to methods of using the 4D5 antibodies and compositions comprising them in the diagnosis, prognosis and therapy of diseases such as cancer, autoimmune diseases, inflammatory disorders, and infectious disease.


The present invention is directed to bi-specific diabodies that comprise two or more polypeptide chains and which possess at least one Epitope-Binding Site that is immunospecific for an epitope of PD-1 and at least one Epitope-Binding Site that is immunospecific for an epitope of LAG-3 (i.e., a PD-ILAG-3 bi-specific diabody). More preferably, the present invention is directed to bi-specific diabodies that comprise four polypeptide chains and which possess two Epitope-Binding Sites that are immunospecific for one (or two) epitope(s) of PD-1 and two Epitope-Binding Site that are immunospecific for one (or two) epitope(s) of LAG-3 (i.e., a PD-1LAG-3 bi-specific, tetra-valent diabody).


CD 19 x CD3 bi-specific monovalent diabodies, and particularly, CD 19 x CD3 bi- specific monovalent Fc diabodies, are capable of simultaneous binding to CD 19 and CD3, and are used in the treatment of hematologic malignancies.


Patent
Boehringer Ingelheim and MacroGenics | Date: 2017-07-12

The disclosure relates to compounds specific for IL23A and TNF-alpha, compositions comprising the compounds, and methods of use thereof. Nucleic acids, cells, and methods of production related to the compounds and compositions are also disclosed.


Patent
Duke University, MacroGenics and University of North Carolina at Chapel Hill | Date: 2017-08-09

The invention is directed to bispecific molecules comprising an HIV-1 envelope targeting arm and an arm targeting an effector cell, compositions comprising these bispecific molecules and methods of use. In certain aspects, the bispecific molecules of the present invention can bind to two different targets or epitopes on two different cells wherein the first epitope is expressed on a different cell type than the second epitope, such that the bispecific molecules can bring the two cells together. In certain aspects, the bispecific molecules of the present invention can bind to two different cells, wherein the bispecific molecules comprises an arm with the binding specificity of A32, 7B2, CH27, CH28 or CH44.


The present invention is directed to a combination therapy involving the administration of: (1) a bi-specific molecule capable of specifically binding to CD19 and to CD3 (i.e., a CD19CD3 bi-specific molecule), and (2) a Brutons Tyrosine Kinase (BTK) inhibitor for the treatment of disease, in particular treatment of a disease associated with or characterized by the expression of CD19. Preferably, such a CD19CD3 bi-specific molecules are bi-specific monovalent diabodies. The invention is directed to pharmaceutical compositions that contain such a CD19CD3 bi-specific molecule, a BTK inhibitor, or a combination of such agents. The invention is additionally directed to methods for the use of such pharmaceutical compositions in the treatment of disease, in particular, treatment of a cancer associated with or characterized by the expression of CD19.


Patent
MacroGenics | Date: 2017-04-12

The present invention relates to Tri-Specific Binding Molecules, which are multichain polypeptide molecules that possess three Binding Domains and are thus capable of mediating coordinated binding to three epitopes. The Binding Domains may be selected such that the Tri-Specific Binding Molecules are capable of binding to any three different epitopes. Such epitopes may be epitopes of the same antigen or epitopes of two or three different antigens. In a preferred embodiment, one of such epitopes will be capable of binding to CD3, the second of such epitopes will be capable of binding to CD8, and the third of such epitopes will be capable of binding to an epitope of a Disease-Associated Antigen. The invention also provides a novel RORl -binding antibody, as well as derivatives thereof and uses for such compositions.

Loading MacroGenics collaborators
Loading MacroGenics collaborators