Entity

Time filter

Source Type

Rockville, MD, United States

Mather J.P.,MacroGenics
Stem Cells | Year: 2012

The current resurgence of interest in the cancer stem cell (CSC) hypothesis as possibly providing a unifying theory of cancer biology is fueled by the growing body of work on normal adult tissue stem cells and the promise that CSC may hold the key to one of the central problems of clinical oncology: tumor recurrence. Many studies suggest that the microenvironment plays a role, perhaps a seminal one, in cancer development and progression. In addition, the possibility that the stem cell-like component of tumors is capable of rapid and reversible changes of phenotype raises questions concerning studies with these populations and the application of what we learn to the clinical situation. These types of questions are extremely difficult to study using in vivo models or freshly isolated cells. Established cell lines grown in defined conditions provide important model systems for these studies. There are three types of in vitro models for CSCs: (a) selected subpopulations of existing tumor lines (derived from serum-containing medium; (b) creation of lines from tumor or normal cells by genetic manipulation; or (c) direct in vitro selection of CSC from tumors or sorted tumor cells using defined serum-free conditions. We review the problems associated with creating and maintaining in vitro cultures of CSCs and the progress to date on the establishment of these important models. © AlphaMed Press. Source


The present invention relates to molecules, particularly polypeptides, more particularly immunoglobulins (e.g., antibodies), comprising a variant Fc region, wherein said variant Fc region comprises at least one amino acid modification relative to a wild-type Fc region, which variant Fc region binds FcRIIIA and/or FcRIIA with a greater affinity, relative to a comparable molecule comprising the wild-type Fc region. The molecules of the invention are particularly useful in preventing, treating, or ameliorating one or more symptoms associated with a disease, disorder, or infection. The molecules of the invention are particularly useful for the treatment or prevention of a disease or disorder where an enhanced efficacy of effector cell function (e.g., ADCC) mediated by FcR is desired, e.g., cancer, infectious disease, and in enhancing the therapeutic efficacy of therapeutic antibodies the effect of which is mediated by ADCC.


Patent
Boehringer Ingelheim and MacroGenics | Date: 2015-09-03

The disclosure relates to compounds specific for IL23A and TNF-alpha, compositions comprising the compounds, and methods of use thereof. Nucleic acids, cells, and methods of production related to the compounds and compositions are also disclosed.


The present invention relates to antibodies and their fragments that are immunoreactive to the mammalian, and more particularly, the human B7-H3 receptor and to uses thereof, particularly in the treatment of cancer and inflammation. The invention thus particularly concerns humanized B7-H3-reactive antibodies and their immunoreactive fragments that are capable of mediating, and more preferably enhancing the activation of the immune system against cancer cells that are associated with a variety of human cancers.


Patent
MacroGenics | Date: 2015-02-24

This invention relates to chimeric and humanized antibodies that specifically bind the BCR complex, and particularly chimeric and humanized antibodies to the BCR complex. The invention also relates to methods of using the antibodies and compositions comprising them in the diagnosis, prognosis and therapy of diseases such as cancer, autoimmune diseases, inflammatory disorders, and infectious disease.

Discover hidden collaborations