Luxembourg, Luxembourg
Luxembourg, Luxembourg

Time filter

Source Type

Patent
Luxembourg Institute Of Health | Date: 2017-05-24

The present invention concerns methods and means for assessing the quality of a biological sample. Specifically, the present invention relates to a method for assessing the quality of a biological sample comprising the steps of measuring the concentration of lactate and of ascorbate of said biological sample.


Patent
Luxembourg Institute Of Health | Date: 2017-05-24

The present invention concerns methods and means for assessing the quality of a biological sample. Specifically, the present invention relates to a method for assessing the quality of a biological sample comprising the steps of measuring the concentration of lactate and of ascorbate of said biological sample.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-CSA-Infra | Phase: INFRA-2011-1.1.5. | Award Amount: 10.83M | Year: 2012

ECRIN is a distributed ESFRI-roadmap pan-European infrastructure designed to support multinational clinical research, making Europe a single area for clinical studies, taking advantage of its population size to access patients. Servicing multinational trials started during its preparatory phase, and it now applies for an ERIC status by 2011. The ERIC budget will be restricted to core activities required to enable provision of services, and the ECRIN-IA project is designed to expand ECRIN partnerships and impact beyond this core activity. Networking activities will promote pan-European expansion, capacity building, and partnership with other world regions, and address the funding issue (WP2). ECRIN-IA will develop e-services, education material to train professionals and patients associations, and communication with users, patients, citizens and policymakers (WP3). It will support the structuring and connection to ECRIN of disease-, technology-, or product-oriented investigation networks and hubs focusing on specific areas: rare diseases (WP4), medical device (WP5), nutrition (WP6). Transnational access activities will support the cost of multinational extension of clinical trials on rare diseases, medical device and nutrition selected by the ECRIN scientific board (WP7). Joint research activities are designed to improve the efficiency of ECRIN services, through the development of tools for risk-adapted monitoring (WP8), and the upgrade of the VISTA data management tool (WP9). This project will build a consistent organisation for clinical research in Europe, with ECRIN developing generic tools and providing generic services to multinational studies, and supporting the construction of pan-European disease-oriented networks, that will in turn act as ECRIN users and provide the scientific content. Such organisation will improve Europes attractiveness for industry trials, boost its scientific competitiveness, and result in better healthcare for European citizens.


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: SC1-HCO-02-2016 | Award Amount: 2.08M | Year: 2017

Molecular in vitro diagnostics and biomedical research have allowed great progress in personalised medicine but further progress is limited by insufficient guidelines for pre-analytical workflow steps (sample collection, preservation, storage, transport, processing etc.) as well as by insufficient quality assurance of diagnostic practice. This allows using compromised patients samples with post collection changes in cellular and extra-cellular biomolecules profiles thus often making diagnostic test results unreliable or even impossible. To tackle this, SPIDA4P aims to generate and implement a comprehensive portfolio of 22 pan-European pre-analytical CEN/Technical Specifications and ISO/International Standards, addressing the important pre-analytical workflows applied to personalized medicine. These will also applicable to biomarker discovery, development and validation as well as to biobanks. Corresponding External Quality Assurance (EQA) Schemes will be developed and implemented as well, aiming to survey the resulting quality of samples and diagnostic practice. SPIDIA4P will ensure stakeholder organisations involvements as well as training, education, and counselling as additional major foci of the project. The consortium will closely coordinate with large European public research consortia to obtain access to research and validation studies data serving as evidence for the new standards developments and achieved improvements of diagnosis, patient stratification and prognosis of disease outcome. At this crucial moment in the development of personalised medicine, SPIDIA4P proposes a coordination and support action that reunites 19 highly experienced partners in international standardisation for in vitro diagnostics, coming from private industry including SMEs, public institutions and from one official European Standards Organisation. This strong consortium is balanced and empowered to maximise the impacts of in vitro diagnostics on personalised medicine.


Grant
Agency: European Commission | Branch: FP7 | Program: MC-IAPP | Phase: FP7-PEOPLE-2011-IAPP | Award Amount: 2.48M | Year: 2012

UroSense is a focussed research programme to generate new concepts from knowledge creation to knowledge transfer between innovative academic and dedicated industry partners utilising a systematic intersectoral secondment programme. The programme brings leading edge academic European LifeScience capacities of Diabetes research at Dublin City University, Ireland, together with the high-profile protein research center of University of Luxembourg to establish innovative biomarker utilisation. The nano-biotechnologies developed with established life science applications of Tethis S.p.A of Milano, Italy will be the SME partner to translate findings to microfluidic applications while GE Medical System of Sweden will integrate results to the recently established, robust molecular imaging technologies leading to novel diagnostics for the benefit of the diabetes patient. The Chinese partner is a leading biotech company in Guangzhou who will provide not only validation of results but also to develop access to the fastest growing global healthcare market benefiting both academic and industrial partners. All European partners are unequivocally in the leading edge in their own sectors sharing the vision of true impacts achieved with a new collaborative working model including efficient knowledge transfer and a shared clear scientific focus. Our consortium is particularly well balanced, focussed and well resourced to cover the value chain from discovery research to applications utilising novel intersectoral collaborations to expedite the utilisation process.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-FP | Phase: HEALTH.2013.4.2-3 | Award Amount: 3.65M | Year: 2013

There exist more than 7000 rare diseases worldwide and the European Society of Paediatric Oncology stated that 75% of rare diseases affect children and 30% of rare disease patients die before the age of five. Usual statistical methods for proving efficacy and safety of therapies fail to provide cost-efficient and reliable results in small populations. There is a pressing need to integrate a broad range of innovative methodologies improving clinical trials in the setting of small sample population groups (SPG). The objective of this research is to produce methods of general applicability irrespective of indication by Integrated DEsign and AnaLysis of clinical trials in SPG (IDEAL) through a multidisciplinary closely collaborating consortium of researchers from European universities, research institutes and industry. The consortium will work in 10 WPs, focussed on assessment of randomization procedures, extrapolating dose-response information, investigation of adaptive designs, optimal designs in mixed models, pharmacogenetic designs, simulation of clinical trials, genetic factors influencing the response, decision analysis and biomarker surrogate endpoints as well as WPs on project management and dissemination of results. Relevant stakeholder concerns (patient needs, regulatory issues, reimbursement, clinical feasibility) will be monitored by a Clinical Scientific Advisory Board. Because of its integrative structure, this research program extends previous approaches, which focus on a certain methodology only. In its totality, the WPs constitute a logically coherent set of methodologies that is of sufficient breadth to tackle these important, multidisciplinary challenges. By combining, enhancing and developing different statistical methodologies and assessment methods, this research program will impact the scientific discussion in promoting efficient statistical methodology for clinical trials in SPG, also in view of existing regulatory guidance in the EU.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-FP | Phase: HEALTH.2013.2.3.0-1 | Award Amount: 5.06M | Year: 2013

FLUTCORE will develop a novel universal influenza A virus (IAV) vaccine based on the tandem core vaccine platform. Recent influenza pandemics have emphasized the urgent need for better vaccines that are reactive with multiple IAV subtypes and that are no longer dependent on intimate knowledge of the prevalent virus. We propose to replace the existing seasonal IAV vaccine with a virus like particle (VLP) carrying several invariant universal influenza antigens. Previous attempts to use these targets have failed due to the poor antigen expression and immunogenicity. The highly immunogenic tandem core system overcomes this limitation. Specifically, we propose to develop a VLP carrying two or more invariant influenza antigens, express these in yeast and then examine immunogenicity in mice. The vaccine will be further tested in the rigorous ferret system before being scaled up for manufacture. An optimal clone will then be transferred to an accredited contract manufacturer for production. A phase I clinical trial will be carried out once pre-clinical toxicology has been successfully completed. Our consortium will examine the immune responses in both animals and humans thoroughly to ensure that the vaccine candidate chosen can produce a protective IAV immune response in all individuals. To achieve these objectives, our proposal builds upon the complementary expertise of seven high-performing partners representing four European countries, with world leadership in HBV core biology, immunological analysis, commercial manufacture and influenza clinical trials, making our consortium ideally positioned to develop the vaccine and to take it from bench to bedside. The leading role of SMEs in the consortium will ensure that the technology developed by FLUTCORE will generate highly marketable products, offering both improved patient protection and long-term cost savings for health care in Europe once annual influenza vaccines are replaced.


Brenner D.,Luxembourg Institute of Health | Blaser H.,Ontario Cancer Institute | Mak T.W.,Ontario Cancer Institute | Mak T.W.,University of Toronto
Nature Reviews Immunology | Year: 2015

Tumour necrosis factor (TNF) is a pro-inflammatory cytokine that has important roles in mammalian immunity and cellular homeostasis. Deregulation of TNF receptor (TNFR) signalling is associated with many inflammatory disorders, including various types of arthritis and inflammatory bowel disease, and targeting TNF has been an effective therapeutic strategy in these diseases. This Review focuses on the recent advances that have been made in understanding TNFR signalling and the consequences of its deregulation for cellular survival, apoptosis and regulated necrosis. We discuss how TNF-induced survival signals are distinguished from those that lead to cell death. Finally, we provide a brief overview of the role of TNF in inflammatory and autoimmune diseases, and we discuss up-to-date and future treatment strategies for these disorders. © 2015 MacmillanPublishers Limited.


Patent
Luxembourg Institute Of Health | Date: 2015-09-22

Provided is a method of identifying myocardially-infarcted patients having an increased risk of developing a heart condition.


Patent
Luxembourg Institute Of Health | Date: 2013-11-27

The present invention provides compositions and kits comprising miRNAs useful for the monitoring or diagnosis of heart disease in an individual. In particular, the compositions of the invention can be used for the prognosis of patients towards the development of left ventricular remodeling having suffered from an acute myocardial infarction. In addition, the present invention provides pharmaceutical compositions for the treatment of left ventricular remodeling.

Loading Luxembourg Institute of Health collaborators
Loading Luxembourg Institute of Health collaborators