Luxembourg Clinical Proteomics Center

Strassen, Luxembourg

Luxembourg Clinical Proteomics Center

Strassen, Luxembourg
SEARCH FILTERS
Time filter
Source Type

Carr S.A.,The Broad Institute of MIT and Harvard | Abbatiello S.E.,The Broad Institute of MIT and Harvard | Ackermann B.L.,Eli Lilly and Company | Borchers C.,University of Victoria | And 43 more authors.
Molecular and Cellular Proteomics | Year: 2014

Adoption of targeted mass spectrometry (MS) approaches such as multiple reaction monitoring (MRM) to study biological and biomedical questions is well underway in the proteomics community. Successful application depends on the ability to generate reliable assays that uniquely and confidently identify target peptides in a sample. Unfortunately, there is a wide range of criteria being applied to say that an assay has been successfully developed. There is no consensus on what criteria are acceptable and little understanding of the impact of variable criteria on the quality of the results generated. Publications describing targeted MS assays for peptides frequently do not contain sufficient information for readers to establish confidence that the tests work as intended or to be able to apply the tests described in their own labs. Guidance must be developed so that targeted MS assays with established performance can be made widely distributed and applied by many labs worldwide. To begin to address the problems and their solutions, a workshop was held at the National Institutes of Health with representatives from the multiple communities developing and employing targeted MS assays. Participants discussed the analytical goals of their experiments and the experimental evidence needed to establish that the assays they develop work as intended and are achieving the required levels of performance. Using this "fit-for-purpose" approach, the group defined three tiers of assays distinguished by their performance and extent of analytical characterization. Computational and statistical tools useful for the analysis of targeted MS results were described. Participants also detailed the information that authors need to provide in their manuscripts to enable reviewers and readers to clearly understand what procedures were performed and to evaluate the reliability of the peptide or protein quantification measurements reported. This paper presents a summary of the meeting and recommendations. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.


PubMed | Center for Genetic Engineering and Biotechnology, Luxembourg Clinical Proteomics Center, University of Concepción, Proteomics Unit and 4 more.
Type: Journal Article | Journal: Glycobiology | Year: 2016

Contact with the urticating setae from the abdomen of adult females of the neo-tropical moth Hylesia metabus gives rise to an urticating dermatitis, characterized by intense pruritus, generalized malaise and occasionally ocular lesions (lepidopterism). The setae contain a pro-inflammatory glycosylated protease homologous to other S1A serine proteases of insects. Deglycosylation with PNGase F in the presence of a buffer prepared with 40% H2 (18)O allowed the assignment of an N-glycosylation site. Five main paucimannosidic N-glycans were identified, three of which were exclusively (1-6)-fucosylated at the proximal GlcNAc. A considerable portion of these N-glycans are anionic species sulfated on either the 4- or the 6-position of the (1-6)-mannose residue of the core. The application of chemically and enzymatically modified variants of the toxin in an animal model in guinea pigs showed that the pro-inflammatory and immunological reactions, e.g. disseminated fibrin deposition and activation of neutrophils, are due to the presence of sulfate-linked groups and not on disulfide bonds, as demonstrated by the reduction and S-alkylation of the toxin. On the other hand, the hemorrhagic vascular lesions observed are attributed to the proteolytic activity of the toxin. Thus, N-glycan sulfation may constitute a defense mechanism against predators.


Lesur A.,University of Geneva | Varesio E.,University of Geneva | Domon B.,Luxembourg Clinical Proteomics Center | Hopfgartner G.,University of Geneva
Journal of Proteome Research | Year: 2012

We present a novel analytical platform for peptides quantitative assays in biological matrices based on microscale liquid chromatography fractionation and matrix-assisted laser desorption/ionization mass spectrometric detection using the selected reaction monitoring (SRM) mode. The MALDI source was equipped with a high frequency Nd:YAG laser (1000 Hz) and mounted on a triple quadrupole/linear ion trap mass spectrometer (MALDI-QqQLIT). Compared to conventional LC-ESI-SRM/MS, the separated analytes are "time- frozen" onto the MALDI plate in fractions, and navigation through the LC chromatogram makes it possible to perform SRM experiments as well as enhanced product ion spectra acquisition for confirmatory analyses without time constraints. The LC spots were analyzed using different rastering speeds ranging from 0.25 to 4 mm/sec with the shortest analysis time of 425 ms/spot. Since the LC runs can be multiplexed and do not need a comprehensive investigation, the present platform offers a valuable alternative to LC-ESI-SRM/MS for high throughput proteomic analyses. In addition, the derivatization of the N-terminal ?-amino group by sulfonation was found to be key for the fragmentation of singly charged peptides under low collision energy regime. Under such conditions, y-ion series were observed in the MS/MS spectra, and thus the design of SRM experiments was greatly simplified. The quantitative performance of the platform was compared to that of LC-ESI-SRM/MS by spiking yeast tryptic peptides in human plasma digests. Both platforms exhibited similar sensitivities, accuracy (within ±20%) and precision (under 20%) in the relative quantification mode. As a proof of principle, the relative and absolute quantification of proteins associated with glycolysis, glyoxylate and tricarboxylic acid (TCA) cycles over a growth time course of Saccharomyces cerevisiae on glucose media was successfully performed using isotopic dilution. © 2012 American Chemical Society.


Gallien S.,Luxembourg Clinical Proteomics center | Peterman S.,Thermo Fisher Scientific | Kiyonami R.,Thermo Fisher Scientific | Souady J.,Luxembourg Clinical Proteomics center | And 3 more authors.
Proteomics | Year: 2012

Large-scale proteomics applications using SRM analysis on triple quadrupole mass spectrometers present new challenges to LC-MS/MS experimental design. Despite the automation of building large-scale LC-SRM methods, the increased numbers of targeted peptides can compromise the balance between sensitivity and selectivity. To facilitate large target numbers, time-scheduled SRM transition acquisition is performed. Previously published results have demonstrated incorporation of a well-characterized set of synthetic peptides enabled chromatographic characterization of the elution profile for most endogenous peptides. We have extended this application of peptide trainer kits to not only build SRM methods but to facilitate real-time elution profile characterization that enables automated adjustment of the scheduled detection windows. Incorporation of dynamic retention time adjustments better facilitate targeted assays lasting several days without the need for constant supervision. This paper provides an overview of how the dynamic retention correction approach identifies and corrects for commonly observed LC variations. This adjustment dramatically improves robustness in targeted discovery experiments as well as routine quantification experiments. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


Gallien S.,Luxembourg Clinical Proteomics Center | Duriez E.,Luxembourg Clinical Proteomics Center | Domon B.,Luxembourg Clinical Proteomics Center
Journal of Mass Spectrometry | Year: 2011

Selected reaction monitoring (SRM) performed on triple quadrupole mass spectrometers has been the reference quantitative technique to analyze small molecules for several decades. It is now emerging in proteomics as the ideal tool to complement shotgun qualitative studies; targeted SRM quantitative analysis offers high selectivity, sensitivity and a wide dynamic range. However, SRM applied to proteomics presents singularities that distinguish it from small molecules analysis. This review is an overview of SRM technology and describes the specificities and the technical aspects of proteomics experiments. Ongoing developments aiming at increasing multiplexing capabilities of SRM are discussed; they dramatically improve its throughput and extend its field of application to directed or supervised discovery experiments. Copyright © 2011 John Wiley & Sons, Ltd.


PubMed | Luxembourg Clinical Proteomics center
Type: Journal Article | Journal: Journal of mass spectrometry : JMS | Year: 2011

Selected reaction monitoring (SRM) performed on triple quadrupole mass spectrometers has been the reference quantitative technique to analyze small molecules for several decades. It is now emerging in proteomics as the ideal tool to complement shotgun qualitative studies; targeted SRM quantitative analysis offers high selectivity, sensitivity and a wide dynamic range. However, SRM applied to proteomics presents singularities that distinguish it from small molecules analysis. This review is an overview of SRM technology and describes the specificities and the technical aspects of proteomics experiments. Ongoing developments aiming at increasing multiplexing capabilities of SRM are discussed; they dramatically improve its throughput and extend its field of application to directed or supervised discovery experiments.


PubMed | Center for Genetic Engineering and Biotechnology and Luxembourg Clinical Proteomics Center
Type: | Journal: Journal of proteomics | Year: 2015

Blood cells and plasma are important media for the four serotypes of dengue virus (DENV1-4) spreading into an infected person. Thus, interactions with human plasma proteins are expected to be decisive in the course of the viral infection. Affinity purification followed by MS analysis (AP/MS) was used to isolate and identify plasma-derived proteins capable to interact with a recombinant protein comprising the domain III of the envelope protein of DENV2 (DIIIE2). The elution of the AP potently inhibits DENV2 infection. Twenty-nine proteins were identified using a label-free approach as specifically captured by DIIIE2. Of these, a direct interaction with C reactive protein, thrombin and Inter-alpha-inhibitor complexes was confirmed by ELISA. Results provide further evidence of a significant representation of proteins from complement and coagulation cascades on DENV2 interactome in human plasma and stand out the domain III of the viral envelope protein as participant on these interactions. A functional clustering analysis highlights the presence of three structural motifs among putative DIIIE2-binding proteins: hydroxylation and EGF-like calcium-binding- and Gla domains.Early cycles of dengue virus replication take place in human blood cells. Thus, the characterization of the interactome of dengue virus proteins in human plasma can lead to the identification of pivotal interactions for the infection that can eventually constitute the target for the development of methods to control dengue virus-caused disease. In this work we identified 29 proteins from human plasma that potentially interact with the envelope protein of dengue 2 virus either directly or through co-complex formation. C reactive protein, thrombin and Inter-alpha-inhibitor complexes were validated as interactors of the domain III of the envelope protein of dengue 2. Results highlight the presence of three structural motifs among putative DIIIE2-binding proteins: hydroxylation and EGF-like calcium-binding- and Gla domains. This finding together with the participation of domain III of the envelope protein on the interactions with human plasma proteins should contribute to a better understanding of dengue virus interactome in human plasma. Such knowledge can contribute to the development of more effective treatments to infected persons.


PubMed | Luxembourg Clinical Proteomics Center
Type: Journal Article | Journal: Nature protocols | Year: 2012

Mass spectrometry-based targeted proteomics is a rapidly expanding method for quantifying proteins in complex clinical samples such as plasma. In conjunction with the stable isotope dilution method, selected reaction monitoring (SRM) assays provide unparalleled sensitivity and selectivity for detection and quantification. A crucial factor for robust SRM assays is the reduction of interference by lowering the background. This can be achieved by the selective isolation of a subproteome, such as N-glycosylated proteins, from the original sample. The present protocol includes the development and optimization of SRM assays associated with each peptide of interest and the qualification of assays in the biological matrix to establish the limits of detection and quantification. The protocol also describes the enrichment of formerly N-glycosylated peptides relying on periodate oxidation of glycan moieties attached to the proteins, their immobilization on solid supports through hydrazide chemistry, proteolysis and enzymatic release of the formerly N-glycosylated peptides.


PubMed | Center for Genetic Engineering and Biotechnology and Luxembourg Clinical Proteomics Center
Type: | Journal: Data in brief | Year: 2016

The four serotypes of dengue virus (DENV1-4) are the causal agents of the emerging disease Dengue Fever and its severe forms. DENV is inoculated into human blood through a mosquito bite. Thus, plasma is an important media for DENV dissemination in infected persons and several important interactions should take place for the virus with human plasma proteins that strongly influence or may determine the course of the infection. This dataset contains 239 proteins identified in the elution fractions of human plasma subjected to DE-52 anion exchange chromatography. Data on DENV2 infection of Huh 7.5 cells in presence of the human plasma fraction is also presented.


PubMed | Luxembourg Clinical Proteomics center
Type: Journal Article | Journal: Proteomics | Year: 2012

Large-scale proteomics applications using SRM analysis on triple quadrupole mass spectrometers present new challenges to LC-MS/MS experimental design. Despite the automation of building large-scale LC-SRM methods, the increased numbers of targeted peptides can compromise the balance between sensitivity and selectivity. To facilitate large target numbers, time-scheduled SRM transition acquisition is performed. Previously published results have demonstrated incorporation of a well-characterized set of synthetic peptides enabled chromatographic characterization of the elution profile for most endogenous peptides. We have extended this application of peptide trainer kits to not only build SRM methods but to facilitate real-time elution profile characterization that enables automated adjustment of the scheduled detection windows. Incorporation of dynamic retention time adjustments better facilitate targeted assays lasting several days without the need for constant supervision. This paper provides an overview of how the dynamic retention correction approach identifies and corrects for commonly observed LC variations. This adjustment dramatically improves robustness in targeted discovery experiments as well as routine quantification experiments.

Loading Luxembourg Clinical Proteomics Center collaborators
Loading Luxembourg Clinical Proteomics Center collaborators