Entity

Time filter

Source Type

CORK, Ireland

Grant
Agency: Cordis | Branch: FP7 | Program: CP-TP | Phase: KBBE.2012.3.3-03 | Award Amount: 7.40M | Year: 2012

BIOINTENSE is directed at addressing the challenges of low productivity and process intensity frequently hampering the implementation of bioprocesses in industry. For the future of the next generation of chemical processes in Europe it provides the opportunity not only to address intensification but also to enable this in a rapid manner. BIOINTENSE will make use of -technology to develop economically feasible intensified processes by integration of separation and process control, and to create tools to speed up the characterization and assessment of different process options and technologies and biocatalysts for increased process intensity. A strong focus lies in increasing the scale of biocatalytic and cascade reactions and to improve the fundamental factors that affect the economic feasibility. Both numbering up and scale-up methodologies will be tested. The BIOINTENSE consortium is ideally suited to address the challenges in KBBE.2012.3.3-03 and to meet the objectives, as it spans across disciplines, academia and industry: SMEs with a strong technology base in the areas of integrating separation in bioprocessing, biocatalyst development, immobilization, -reactor fabrication, and on-line monitoring will ensure top of the line industry focused research with a strong focus on scale-up and implementation. There is an urgent need for these challenges to be overcome to move towards a European Knowledge Based BioEconomy to exploit the environmental savings and economic potential if such bioprocesses were in place. Building on the recent advances in molecular biology, the time is now right to develop the necessary process engineering methodologies and implementation strategies to unlock the full potential of bioprocesses.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: NMP-2007-1.1-1 | Award Amount: 4.95M | Year: 2008

EXCELL is a novel innovative approach to explore interaction mechanisms between biological materials and systems/nanostructures. It involves a forward-looking cross-disciplinary and design-based research to generate an integrated, biologically inspired technological platform of high complexity, able to monitor cell dynamics at nano-scale. Expertise in cellular and molecular biology, nanosciences, material engineering, biophysics, biotechnology, modelling, and analytical chemistry, are combined to address the targeted goals, which go beyond the state of the art methods used in traditional biotechnology and systems biology. EXCELL will provide a complete Lab-in-a-Cell (LIC) sensor and actuator platform, which is capable of: (1) studying single cells in their natural environment surrounded by other cells or a complex mixture of different cells/tissue, (2) following the dynamics and interdependence of single cell processes from gene, protein, metabolite to compound secretion, exocytosis and cell-to-cell communication, (3) testing how and where various stimuli affect the different levels of the molecular machinery and finally (4) programming cells to be able to differentiate into a particular phenotype. A major task is the design of suitable biocompatible nano/bio interfaces that ensures a sustainable cellular environment. EXCELL provides a unique opportunity for developing advanced, novel experimental tools to address fundamental problems of stem cell research and poses a potential for possible diversification and modulation of developmental programs of stem cells to differentiate them into specific phenotypes. EXCELL has the capacity to drive new discoveries having a significant impact not only in the field of stem cell research and clinical use, but also on molecular engineering, nanosciences, sensor development, diagnostics, therapeutics, biotechnology and industry (smart materials, medical diagnostics, pharmaceutical companies, start-ups)


Grant
Agency: Cordis | Branch: FP7 | Program: MC-IAPP | Phase: FP7-PEOPLE-IAPP-2008 | Award Amount: 579.39K | Year: 2009

Cellular bioenergetics play a key role in the pathogenesis of acute and chronic neurological disorders. Novel sensors and analytical systems in combination with biomedical imaging can provide powerful new insights into the role of cellular bioenergetics in the propagation of disease states. OXY-SENSE is an Industry-Academia partnership of experienced neuroscientists, experts in optical oxygen sensing and probe design, plus a global player in biomedical imaging and software design. OXY-SENSE will develop and apply new technologies to investigate the role of cellular bioenergetics in neurological disorders and toxicity, with the aim to identify and validate new therapeutic targets and test systems. The partnership will allow for the development and dissemination of new, European born, technology by integrating the R&D activities of LUXCEL Biosciences, a SME and pioneer in oxygen sensing technologies, into a hypothesis-driven research programme. Expertise in image analysis, pathway modelling and software development resulting from a previous academia-industry partnership with SIEMENS will merge with the activities of OXY-SENSE. Through industrial and academic secondments, the recognised expertise of SIEMENS in software development and project management and the expertise of LUXCEL in sensor development will be mutually beneficial for all partners involved, and accelerate their discovery process and the commercialisation of these findings.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: HEALTH.2012.1.4-2 | Award Amount: 7.74M | Year: 2012

Organ transplantation is often the only life saving medical approach for several diseases, in spite of many associated problems (lack of organ donors, rejection, life-long heavy medication). The innovative therapeutic approach of the 21th century is focusing on bioartificial organs as an alternative solution.Tissue engineering and stem cell biology have uncovered groundbreaking opportunities for cellular re-programming, i.e., some cell types can be changed into a pluripotent stem cell (PSC) by over-expressing key transcription factors. These induced pluripotent stem cells (iPSC) share two key characteristics with embryonic stem cells (eSC): self-renewal and pluripotency (ability to differentiate to form any cell type in the human body). Crucially, they are generated from adult cells circumventing many ethical concerns associated with using human eSC. The discovery of human iPSC (hiPSC) enables the growth of an almost unlimited supply of a patients own cells, potentially conferring the ability to grow and regenerate tissues and organs from self, which is expected to resolve organ rejection-related issues. Similarly, recent developments in material science and nanobiotechnology resulted in engineered materials and devices (manipulated and controlled by physical and chemical means), with unique functional or analytical properties. NanoBio4Trans will merge hiPSC-, polymer hybrid scaffolds and biosensor technologies to develop new tools (beyond state-of-the-art) for use in transplantation and biomedical research. The international, trans-sectoral, and multidisciplinary consortium with complementary and leading expertise in material sciences, cell- and molecular biology, sensor technologies, and bioanalytics, aims at developing, optimising and validating a highly vascularised in vivo-like BAL as an extracorporeal bioartificial liver (EBAL), ready to be perfused with human blood plasma, and to be exploited in modern medical technology.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: HEALTH.2013.1.3-1 | Award Amount: 15.99M | Year: 2013

HeCaToS aims at developing integrative in silico tools for predicting human liver and heart toxicity. The objective is to develop an integrated modeling framework, by combining advances in computational chemistry and systems toxicology, for modelling toxic perturbations in liver and heart across multiple scales. This framework will include vertical integrations of representations from drug(metabolite)-target interactions, through macromolecules/proteins, to (sub-)cellular functionalities and organ physiologies, and even the human whole-body level. In view of the importance of mitochondrial deregulations and of immunological dysfunctions associated with hepatic and cardiac drug-induced injuries, focus will be on these particular Adverse Outcome Pathways. Models will be populated with data from innovative in vitro 3D liver and heart assays challenged with prototypical hepato- or cardiotoxicants; data will be generated by advanced molecular and functional analytical techniques retrieving information on key (sub-)cellular toxic evens. For validating perturbed AOPs in vitro in appropriate human investigations, case studies on patients with liver injuries or cardiomyopathies due to adverse drug effects, will be developed, and biopsies will be subjected to similar analyses. Existing ChEMBL and diXa data infrastructures will be advanced for data gathering, storing and integrated statistical analysis. Model performance in toxicity prediction will be assessed by comparing in silico predictions with experimental results across a multitude of read-out parameters, which in turn will suggest additional experiments for further validating predictions. HeCaToS, organized as a private-public partnership, will generate major socioeconomic impact because it will develop better chemical safety tests leading to safer drugs, but also industrial chemicals, and cosmetics, thereby improving patient and consumer health, and sustaining EUs industrial competitiveness.

Discover hidden collaborations