Coopersburg, PA, United States
Coopersburg, PA, United States

Lutron Electronics Company, Inc. is a privately held corporation that designs, manufactures, and sells lighting control systems and a variety of other related products. Its worldwide operations are headquartered in Coopersburg, Pennsylvania, in the Lehigh Valley region of the state. Wikipedia.


Time filter

Source Type

Patent
Lutron Electronics | Date: 2016-06-17

A load control device for an electrical load may operate in a normal mode and a burst mode to adjust the amount of power delivered to the electrical load. The load control device may comprise a control circuit that operates in the normal mode to regulate an average magnitude of a load current conducted through the load between a maximum rated current and a minimum rated current. During the normal mode, the control circuit may control the operating period of a load regulation circuit between a high-end operating period and a low-end operating period. The control circuit may operate in the burst mode to regulate the average magnitude of the load current below the minimum rated current. During the burst mode, the control circuit may adjust the low-end operating period to be less than or equal to a minimum on time of the load regulation circuit.


Patent
Lutron Electronics | Date: 2016-03-31

A load control device (e.g., a switching device) for controlling power delivered from an AC power source to an electrical device (e.g., a lighting load) may be configured to detect that a relay is stuck closed and attempt to fix the relay. The relay of the load control device may be adapted to be coupled between the source and the electrical device to control the power delivered to the electrical device so as to generate a switched-hot voltage. The load control device may comprise a detect circuit configured to generate a detect signal indicating a magnitude of the switched-hot voltage, and a control circuit configured to monitor the detect signal. The control circuit may be configured to determine that the relay is stuck closed in response to the detect signal, and to control the relay in order to attempt to fix the relay by repeatedly closing and opening the relay.


A two-way load control system comprises a power device, such as a load control device for controlling an electrical load receiving power from an AC power source, and a controller adapted to be coupled in series between the source and the power device. The load control system may be installed without requiring any additional wires to be run, and is easily configured without the need for a computer or an advanced commissioning procedure. The power device receives both power and communication over two wires. The controller generates a phase-control voltage and transmits a forward digital message to the power device by encoding digital information in timing edges of the phase-control voltage. The power device transmits a reverse digital message to the controller via the power wiring.


Patent
Lutron Electronics | Date: 2016-06-15

A cable guided shade system can include a head rail at least one guide cable anchor spaced from the head rail, and at least on guide cable that is fixed to the head rail and extends to the guide cable anchor. The guide cable anchor is configured such that the guide cable can be tensioned at the guide cabled anchor. The system further includes a covering material that is fixed to the head rail and is configured to move along the guide cable between an open position and a closed position.


Patent
Lutron Electronics | Date: 2016-09-07

An electronic dimming ballast or light emitting diode (LED) driver for driving a gas discharge lamp or LED lamp may be operable to control the lamp to avoid flickering and flashing of the lamp during low temperature or low mercury conditions. Such a ballast or driver may include a control circuit that is operable to adjust the intensity of the lamp. Adjusting the intensity of the lamp may include decreasing the intensity of the lamp. The control circuit may be operable to stop adjustment of the intensity of the lamp if a magnitude of the lamp voltage across the lamp is greater than an upper threshold, and subsequently begin to adjust the intensity of the lamp when the lamp voltage across the lamp is less than a lower threshold. Subsequently beginning to adjust the intensity of the lamp may include subsequently decreasing the intensity of the lamp.


A control device may comprise a plurality of buttons, a plurality of light sources located behind the respective buttons and configured to illuminate the buttons, a light detector circuit configured to measure an ambient light level around the control device, and/or a control circuit configured to control the light sources to adjust surface illumination intensities of the respective buttons in response to the measured ambient light level. Each button may comprise indicia indicating a function of the button. The control circuit set the first button as active and the second button as inactive in response to an actuation of the first button. The control circuit may, based on the measured ambient light level, control the light sources to illuminate the first button to an active surface illumination intensity, and to illuminate the second button to an inactive surface illumination intensity that is less than the active surface illumination intensity.


A wall-mounted keypad may include a light detector circuit located inside the keypad that is configured to measure an ambient light level in a space. The light detector circuit may receive ambient light through an aperture that is hidden from view by the keypad. The keypad may include a reflector for directing ambient light onto the light detector circuit. The keypad may include an enclosure that houses the light detector circuit. The enclosure may define a recess that exposes at least a portion of the light detector circuit. The enclosure may include a reflector that may focus ambient light received through the aperture onto the light detector circuit. The keypad may include a control circuit that may be configured to illuminate the indicia of respective buttons of the control device in response to actuations of the one or more buttons, in accordance with the measured ambient light level.


Patent
Lutron Electronics | Date: 2016-05-10

A load control system includes a load control device and a remote control for configuring and controlling operation of the load control device. The load control device and remote control may be mounted to an electrical wallbox. The system may be configured by associating the remote control with the load control device, and actuating a button on the remote control to configure the load control device. A second remote control device may be directly or indirectly associated with the load control device. The load control device and remote control may communicate via inductive coils that are magnetically coupled together. The remote control may be operable to charge a battery from energy derived from the magnetic coupling between the inductive coils. The load control device and remote control may include near-field communication modules that are operable to communicate wirelessly via near-field radiation.


Patent
Lutron Electronics | Date: 2016-05-26

A temperature control device (e.g., a thermostat) may be configured to control an internal heat-generating electrical load so as to accurately measure a present temperature in a space around the temperature control device. The temperature control device may comprise a temperature sensing circuit configured to generate a temperature control signal indicating the present temperature in the space, and a control circuit configured to receive the temperature control signal and to control the internal electrical load. The control circuit may be configured to energize the internal electrical load in an awake state and to cause the internal electrical load to consume less power in an idle state. The control circuit may be configured to control the internal electrical load to a first energy level (e.g., a first intensity) during the awake state and to a second energy level (e.g., second intensity) that is less than the first during the idle state.


Patent
Lutron Electronics | Date: 2016-01-29

An apparatus may control the power delivered from an AC power source to an electrical load, and may comprise a controllably conductive device. The apparatus may also comprise a controller that may be operatively coupled to a control input of the controllably conductive device. The apparatus may also include a first wireless communication circuit operable to communicate via a first protocol and to join a first wireless communication network operable to communicate via the first protocol. The first wireless communication circuit may be in communication with the controller. The controller may be operative to determine a first condition for communicating via the first protocol. The controller may also be operable to control the first wireless communication circuit to join the first wireless communication network upon the first condition being satisfied.

Loading Lutron Electronics collaborators
Loading Lutron Electronics collaborators