Lurie Childrens Research Center

Chicago, IL, United States

Lurie Childrens Research Center

Chicago, IL, United States

Time filter

Source Type

Browne J.A.,Lurie Childrens Research Center | Yang R.,Lurie Childrens Research Center | Eggener S.E.,Northwestern University | Leir S.-H.,Lurie Childrens Research Center | Harris A.,Lurie Childrens Research Center
Molecular and Cellular Endocrinology | Year: 2016

The luminal environment of the epididymis participates in sperm maturation and impacts male fertility. It is dependent on the coordinated expression of many genes encoding proteins with a role in epithelial transport. We identified cis-regulatory elements for critical genes in epididymis function, by mapping open chromatin genome-wide in human epididymis epithelial (HEE) cells. Bioinformatic predictions of transcription factors binding to the regulatory elements suggested an important role for hepatocyte nuclear factor 1 (HNF1) in the transcriptional program of these cells. Chromatin immunoprecipitation and deep sequencing (ChIP-seq) revealed HNF1 target genes in HEE cells. In parallel, the contribution of HNF1 to the transcriptome of HEE cells was determined by RNA-seq, following siRNA-mediated depletion of both HNF1α and HNF1β transcription factors. Repression of these factors caused differential expression of 1892 transcripts (902 were downregulated and 990 upregulated) in comparison to non-targeting siRNAs. Differentially expressed genes with HNF1 ChIP-seq peaks within 20 kb were subject to gene ontology process enrichment analysis. Among the most significant processes associated with down-regulated genes were epithelial transport of water, phosphate and bicarbonate, all critical processes in epididymis epithelial function. Measurements of intracellular pH (pHi) confirmed a role for HNF1 in regulating the epididymis luminal environment. © 2016 Elsevier Ireland Ltd.


Browne J.A.,Lurie Childrens Research Center | Browne J.A.,Northwestern University | Harris A.,Lurie Childrens Research Center | Harris A.,Northwestern University | And 2 more authors.
PLoS ONE | Year: 2014

A critical part of generating robust chromatin immunoprecipitation (ChIP) data is the optimization of chromatin purification and size selection. This is particularly important when ChIP is combined with next-generation sequencing (ChIP-seq) to identify targets of DNA-binding proteins, genome-wide. Current protocols refined by the ENCODE consortium generally use a two-step cell lysis procedure that is applicable to a wide variety of cell types. However, the isolation and size selection of chromatin from primary human epithelial cells may often be particularly challenging. These cells tend to form sheets of formaldehyde cross-linked material in which cells are resistant to membrane lysis, nuclei are not released and subsequent sonication produces extensive high molecular weight contamination. Here we describe an optimized protocol to prepare high quality ChIP-grade chromatin from primary human bronchial epithelial cells. The ENCODE protocol was used as a starting point to which we added the following key steps to separate the sheets of formaldehyde-fixed cells prior to lysis. (1) Incubation of the formaldehyde-fixed adherent cells in Trypsin-EDTA (0.25% room temperature) for no longer than 5 min. (2) Equilibration of the fixed cells in detergent-free lysis buffers prior to each lysis step. (3) The addition of 0.5% Triton X-100 to the complete cell membrane lysis buffer. (4) Passing the cell suspension (in complete cell membrane lysis buffer) through a 25-gauge needle followed by continuous agitation on ice for 35 min. Each step of the modified protocol was documented by light microscopy using the Methyl Green-Pyronin dual dye, which stains cytoplasm red (Pyronin) and the nuclei grey-blue (Methyl green). This modified method is reproducibly effective at producing high quality sheared chromatin for ChIP and is equally applicable to other epithelial cell types. © 2014 Browne et al.


Fossum S.L.,Lurie Childrens Research Center | Fossum S.L.,Northwestern University | Mutolo M.J.,Lurie Childrens Research Center | Yang R.,Lurie Childrens Research Center | And 8 more authors.
Nucleic Acids Research | Year: 2014

Ets homologous factor (EHF) is an Ets family transcription factor expressed in many epithelial cell types including those lining the respiratory system. Disruption of the airway epithelium is central to many lung diseases, and a network of transcription factors coordinates its normal function. EHF can act as a transcriptional activator or a repressor, though its targets in lung epithelial cells are largely uncharacterized. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq), showed that the majority of EHF binding sites in lung epithelial cells are intergenic or intronic and coincide with putative enhancers, marked by specific histone modifications. EHF occupies many genomic sites that are close to genes involved in intercellular and cell-matrix adhesion. RNA-seq after EHF depletion or overexpression showed significant alterations in the expression of genes involved in response to wounding. EHF knockdown also targeted genes in pathways of epithelial development and differentiation and locomotory behavior. These changes in gene expression coincided with alterations in cellular phenotype including slowed wound closure and increased transepithelial resistance. Our data suggest that EHF regulates gene pathways critical for epithelial response to injury, including those involved in maintenance of barrier function, inflammation and efficient wound repair. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.


Clementz A.G.,Lurie Childrens Research Center | Clementz A.G.,Northwestern University | Harris A.,Lurie Childrens Research Center | Harris A.,Northwestern University
Molecular Cancer Research | Year: 2013

The extracellular matrix (ECM) is a critical component of stroma-to-cell interactions that subsequently activate intracellular signaling cascades, many of which are associated with tumor invasion and metastasis. The ECM contains a wide range of proteins with multiple functions, including cytokines, cleaved cell-surface receptors, secreted epithelial cell proteins, and structural scaffolding. Fibrillar collagens, abundant in the normal ECM, surround cellular structures and provide structural integrity. However during the initial stages of invasive cancers, the ECM is among the first compartments to be compromised. Also present in the normal ECM is the nonfibrillar collagen XV, which is seen in the basement membrane zone but is lost prior to tumor metastasis in several organs. In contrast, the tumor microenvironment often exhibits increased synthesis of fibrillar collagen I and collagen IV, which are associated with fibrosis. The unique localization of collagen XV and its disappearance prior to tumor invasion suggests a fundamental role in maintaining basement membrane integrity and preventing the migration of tumor cells across this barrier. This review examines the structure of collagen XV, its functional domains, and its involvement in cell-surface receptor-mediated signaling pathways, thus providing further insight into its critical role in the suppression of malignancy. © 2013 American Association for Cancer Research.


Yang R.,Lurie Childrens Research Center | Yang R.,Northwestern University | Kerschner J.L.,Lurie Childrens Research Center | Kerschner J.L.,Northwestern University | And 3 more authors.
Biochimica et Biophysica Acta - Gene Regulatory Mechanisms | Year: 2016

Mutations in hepatocyte nuclear factor 1 transcription factors (HNF1α/β) are associated with diabetes. These factors are well studied in the liver, pancreas and kidney, where they direct tissue-specific gene regulation. However, they also have an important role in the biology of many other tissues, including the intestine. We investigated the transcriptional network governed by HNF1 in an intestinal epithelial cell line (Caco2). We used chromatin immunoprecipitation followed by direct sequencing (ChIP-seq) to identify HNF1 binding sites genome-wide. Direct targets of HNF1 were validated using conventional ChIP assays and confirmed by siRNA-mediated depletion of HNF1, followed by RT-qPCR. Gene ontology process enrichment analysis of the HNF1 targets identified multiple processes with a role in intestinal epithelial cell function, including properties of the cell membrane, cellular response to hormones, and regulation of biosynthetic processes. Approximately 50% of HNF1 binding sites were also occupied by other members of the intestinal transcriptional network, including hepatocyte nuclear factor 4A (HNF4A), caudal type homeobox 2 (CDX2), and forkhead box A2 (FOXA2). Depletion of HNF1 in Caco2 cells increases FOXA2 abundance and decreases levels of CDX2, illustrating the coordinated activities of the network. These data suggest that HNF1 plays an important role in regulating intestinal epithelial cell function, both directly and through interactions with other intestinal transcription factors. © 2016 Elsevier B.V.


Stolzenburg L.R.,Lurie Childrens Research Center | Stolzenburg L.R.,Northwestern University | Wachtel S.,Lurie Childrens Research Center | Wachtel S.,Northwestern University | And 3 more authors.
Biochemical Journal | Year: 2016

Irreversible respiratory obstruction resulting from progressive airway damage, inflammation and fibrosis is a feature of several chronic respiratory diseases, including cystic fibrosis (CF), idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). The cytokine transforming growth factor ß (TGF-ß) has a pivotal role in promoting lung fibrosis and is implicated in respiratory disease severity. In the present study, we show that a previously uncharacterized miRNA, miR- 1343, reduces the expression of both TGF-ß receptor 1 and 2 by directly targeting their 3'-UTRs. After TGF-ß exposure, elevated intracellular miR-1343 significantly decreases levels of activated TGF-ß effector molecules, pSMAD2 (phosphorylated SMAD2) and pSMAD3 (phosphorylated SMAD3), when compared with a non-targeting control miRNA. As a result, the abundance of fibrotic markers is reduced, cell migration into a scratch wound impaired and epithelial-to-mesenchymal transition (EMT) repressed. Mature miR-1343 is readily detected in human neutrophils andHL-60 cells and is activated in response to stress in A549 lung epithelial cells. miR-1343 may have direct therapeutic applications in fibrotic lung disease. © 2016 Authors.


Zhang Z.,Lurie Childrens Research Center | Leir S.-H.,Lurie Childrens Research Center | Harris A.,Lurie Childrens Research Center
American Journal of Respiratory Cell and Molecular Biology | Year: 2015

Cystic fibrosis transmembrane conductance regulator gene (CFTR) expression in human airway epithelial cells involves the recruitment of distal cis-regulatory elements, which are associated with airway-selective DNase hypersensitive sites at -44 kb and 235 kb from the gene. The -35-kb site encompasses an enhancer that is regulated by the immune mediators interferon regulatory factor 1 and 2 and by nuclear factor Y. Here we investigate the -44-kb element, which also has enhancer activity in vitro in airway epithelial cells but is inactive in intestinal epithelial cells. This site contains an antioxidant response element (ARE) that plays a critical role in its function in airway cell lines and primary human bronchial epithelial cells. The natural antioxidant sulforaphane (SFN) induces nuclear translocation of nuclear factor, erythroid 2-like 2 (Nrf2), a transcription factor that regulates genes with AREs in their promoters, many of which are involved in response to injury. Under normal conditions, the -44-kb ARE is occupied by the repressor BTB and CNC homology 1, basic leucine zipper transcription factor (Bach1), and v-Maf avian musculoaponeurotic fibrosarcoma oncogene homolog K (MafK) heterodimers. After 2 hours of SFN treatment, Nrf2 displaces these repressive factors and activates CFTR expression. Site-directed mutagenesis shows that both the ARE and an adjacent NF-kB binding site are required for activation of the -44-kb element in airway epithelial cells. Moreover, this element is functionally linked to the -35-kb enhancer in modulating CFTR expression in response to environmental stresses in the airway. Copyright © 2015 by the American Thoracic Society.


Gosalia N.,Lurie Childrens Research Center | Gosalia N.,Northwestern University | Harris A.,Lurie Childrens Research Center | Harris A.,Northwestern University
Genes | Year: 2015

The contribution of chromatin dynamics to the regulation of human disease-associated loci such as the cystic fibrosis transmembrane conductance regulator (CFTR) gene has been the focus of intensive experimentation for many years. Recent technological advances in the analysis of transcriptional mechanisms across the entire human genome have greatly facilitated these studies. In this review we describe the complex machinery of tissue-specific regulation of CFTR expression, and put earlier observations in context by incorporating them into datasets generated by the most recent genomics methods. Though the gene promoter is required for CFTR expression, cell-type specific regulatory elements are located elsewhere in the gene and in flanking intergenic regions. Probably within its own topological domain established by the architectural proteins CTCF and cohesin, the CFTR locus utilizes chromatin dynamics to remodel nucleosomes, recruit cell-selective transcription factors, and activate intronic enhancers. These cis-acting elements are then brought to the gene promoter by chromatin looping mechanisms, which establish long-range interactions across the locus. Despite its complexity, the CFTR locus provides a paradigm for elucidating the critical role of chromatin dynamics in the transcription of individual human genes. © 2015 by the authors; licensee MDPI, Basel, Switzerland.


PubMed | Lurie Childrens Research Center and Northwestern University
Type: | Journal: Molecular and cellular endocrinology | Year: 2016

The luminal environment of the epididymis participates in sperm maturation and impacts male fertility. It is dependent on the coordinated expression of many genes encoding proteins with a role in epithelial transport. We identified cis-regulatory elements for critical genes in epididymis function, by mapping open chromatin genome-wide in human epididymis epithelial (HEE) cells. Bioinformatic predictions of transcription factors binding to the regulatory elements suggested an important role for hepatocyte nuclear factor 1 (HNF1) in the transcriptional program of these cells. Chromatin immunoprecipitation and deep sequencing (ChIP-seq) revealed HNF1 target genes in HEE cells. In parallel, the contribution of HNF1 to the transcriptome of HEE cells was determined by RNA-seq, following siRNA-mediated depletion of both HNF1 and HNF1 transcription factors. Repression of these factors caused differential expression of 1892 transcripts (902 were downregulated and 990 upregulated) in comparison to non-targeting siRNAs. Differentially expressed genes with HNF1 ChIP-seq peaks within 20 kb were subject to gene ontology process enrichment analysis. Among the most significant processes associated with down-regulated genes were epithelial transport of water, phosphate and bicarbonate, all critical processes in epididymis epithelial function. Measurements of intracellular pH (pHi) confirmed a role for HNF1 in regulating the epididymis luminal environment.


PubMed | Lurie Childrens Research Center, Northwestern University and University of North Carolina at Chapel Hill
Type: Journal Article | Journal: Nucleic acids research | Year: 2014

Ets homologous factor (EHF) is an Ets family transcription factor expressed in many epithelial cell types including those lining the respiratory system. Disruption of the airway epithelium is central to many lung diseases, and a network of transcription factors coordinates its normal function. EHF can act as a transcriptional activator or a repressor, though its targets in lung epithelial cells are largely uncharacterized. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq), showed that the majority of EHF binding sites in lung epithelial cells are intergenic or intronic and coincide with putative enhancers, marked by specific histone modifications. EHF occupies many genomic sites that are close to genes involved in intercellular and cell-matrix adhesion. RNA-seq after EHF depletion or overexpression showed significant alterations in the expression of genes involved in response to wounding. EHF knockdown also targeted genes in pathways of epithelial development and differentiation and locomotory behavior. These changes in gene expression coincided with alterations in cellular phenotype including slowed wound closure and increased transepithelial resistance. Our data suggest that EHF regulates gene pathways critical for epithelial response to injury, including those involved in maintenance of barrier function, inflammation and efficient wound repair.

Loading Lurie Childrens Research Center collaborators
Loading Lurie Childrens Research Center collaborators