Entity

Time filter

Source Type

Lund, Sweden

Lund University is one of northern Europe's oldest and most prestigious universities,consistently ranking among the world's top 100 universities. Further, it ranks among the best universities in Northern Europe and in international rankings. The university, located in the city of Lund in the province of Scania, Sweden, traces its roots back to 1425, when a Franciscan studium generale was founded in Lund next to the Lund Cathedral, arguably making it the oldest institution of higher education in Scandinavia followed by studia generalia in Uppsala in 1477 and Copenhagen in 1479. The current university was however not founded until 1666 after Sweden acquired Scania in the 1658 peace agreement with Denmark.Lund University has eight faculties, with additional campuses in the cities of Malmö and Helsingborg, with 47,000 students in more than 280 different programmes and around 2,250 separate courses. The University has some 680 partner universities in over 50 countries and it belongs to the League of European Research Universities as well as the global Universitas 21 network.Two major facilities for materials research are currently under construction in Lund: MAX IV, which will be a world-leading synchrotron radiation laboratory and European Spallation Source , a European facility that will be home to the world’s most powerful neutron source.The university traditionally centers on the Lundagård park adjacent to the Lund Cathedral, with various departments spread in different locations in town, but mostly concentrated in a belt stretching north from the park connecting to the university hospital area and continuing out to the northeastern periphery of the town, where one finds the large campus of the Faculty of Engineering. Wikipedia.


Lema Tome C.M.,Lund University
Molecular neurobiology | Year: 2013

Parkinson's disease patients exhibit progressive spreading of aggregated α-synuclein in the nervous system. This slow process follows a specific pattern in an inflamed tissue environment. Recent research suggests that prion-like mechanisms contribute to the propagation of α-synuclein pathology. Little is known about factors that might affect the prion-like behavior of misfolded α-synuclein. In this review, we suggest that neuroinflammation plays an important role. We discuss causes of inflammation in the olfactory bulb and gastrointestinal tract and how this may promote the initial misfolding and aggregation of α-synuclein, which might set in motion events that lead to Parkinson's disease neuropathology. We propose that neuroinflammation promotes the prion-like behavior of α-synuclein and that novel anti-inflammatory therapies targeting this mechanism could slow disease progression. Source


Olsson G.,Lund University
Water Research | Year: 2012

ICA - instrumentation, control and automation - is a hidden technology. It is ubiquitous in all industrial processes, including water and wastewater treatment systems. Still, as long as everything works fine, it is not noted but when things go wrong it will be observed. ICA has now about forty years of history in water and wastewater systems and is well recognized. One early attitude was that ICA will be a necessary burden to be added to a plant in order to correct for a poor design. However, the key reason for ICA is the fact that all processes are subject to disturbances, externally via the wastewater influent, from the customers in a water supply system, or from operations in one unit process that will propagate as a disturbance to another unit within a plant.This paper is an attempt to describe the development of ICA in water and wastewater systems. Most of it is based on personal experiences with all their limitations. No single paper can fairly describe the development that is documented in thousands of research papers, practiced by so many operators and process engineers and implemented in so many treatment systems. Still, the hope is that the paper can give a flavour of the most important ingredients of this fascinating development. © 2012 Elsevier Ltd. Source


Platelets play a crucial role in the pathogenesis of myocardial infarction (MI) by adhering to the site of a ruptured atherosclerotic plaque. The aim of this study was to screen for differences in the micro RNA (miRNA) content of platelets from patients with myocardial infarction and control patients, to investigate a possible release of miRNAs from activated platelets and to elucidate whether platelet-derived miRNAs could act as paracrine regulators of endothelial cell gene expression. Using RNA-seq, we found 9 differentially expressed miRNAs in patients compared with healthy controls, of which 8 were decreased in patients. Of these, miR-22, -185, -320b, and -423-5p increased in the supernatant of platelets after aggregation and were depleted in thrombi aspirated from MI patients, indicating the release of certain miRNAs from activated platelets. To confirm that endothelial cells could take up the released platelet miRNAs, transfer of both fluorescently labeled miRNA and exogenous cel-miR-39 from activated platelets to endothelial cells was shown. Finally, a possible paracrine role of released platelet miR-320b on endothelial cell intercellular adhesion molecule-1 expression was shown. Thus, platelets from patients with MI exhibit loss of specific miRNAs, and activated platelets shed miRNAs that can regulate endothelial cell gene expression. Source


Aging of hematopoietic stem cells (HSCs) leads to several functional changes, including alterations affecting self-renewal and differentiation. Although it is well established that many of the age-induced changes are intrinsic to HSCs, less is known regarding the stability of this state. Here, we entertained the hypothesis that HSC aging is driven by the acquisition of permanent genetic mutations. To examine this issue at a functional level in vivo, we applied induced pluripotent stem (iPS) cell reprogramming of aged hematopoietic progenitors and allowed the resulting aged-derived iPS cells to reform hematopoiesis via blastocyst complementation. Next, we functionally characterized iPS-derived HSCs in primary chimeras and after the transplantation of re-differentiated HSCs into new hosts, the gold standard to assess HSC function. Our data demonstrate remarkably similar functional properties of iPS-derived and endogenous blastocyst-derived HSCs, despite the extensive chronological and proliferative age of the former. Our results, therefore, favor a model in which an underlying, but reversible, epigenetic component is a hallmark of HSC aging. Source


Adlercreutz P.,Lund University
Chemical Society Reviews | Year: 2013

Different methods of preparing lipases for use in organic media are critically reviewed. Solid lipase preparations can be made by typical immobilisation methods such as adsorption, entrapment, covalent coupling or cross-linking. Immobilisation is especially attractive for lipases because, in addition to the normal benefits of enzyme immobilisation, it can also lead to a considerable increase in catalytic activity, probably caused by conformational changes in the lipase molecules. Activation can be achieved, for example, using hydrophobic support materials or surfactants during the immobilisation procedure. Surfactants can also be used to solubilise lipases in organic media via the formation of hydrophobic ion pairs, surfactant-coated lipase or reversed micelles. Lipase preparation methods are discussed with regard to potential lipase inactivation and activation effects, mass transfer limitations, lipase stability and other features important for applications. The practical applications of lipases in organic media reviewed include ester synthesis, modification of triacylglycerols and phospholipids, fatty acid enrichment, enantiomer resolution, biodiesel production and acylation of carbohydrates and bioactive compounds. © 2013 The Royal Society of Chemistry. Source

Discover hidden collaborations