Lund Stem Cell Center

Lund, Sweden

Lund Stem Cell Center

Lund, Sweden
Time filter
Source Type

Politis M.,Imperial College London | Wu K.,Imperial College London | Loane C.,Imperial College London | Quinn N.P.,University College London | And 6 more authors.
Science Translational Medicine | Year: 2012

Cell therapy studies in patients with Parkinson's disease (PD) have been confined to intrastriatal transplantation of dopamine-rich fetal mesencephalic tissue in efforts to improve motor performance. Although some PD patients receiving the dopamine-rich grafts showed improvements in motor symptoms due to replacement of dopaminergic neurons, they still suffered from nonmotor symptoms including depression, fatigue, visual hallucinations, and sleep problems. Using functional imaging and clinical evaluation of motor and nonmotor symptoms in three PD patients transplanted with intrastriatal fetal grafts 13 to 16 years previously, we assessed whether reestablishment of dopaminergic neuronal networks is sufficient to improve a broad range of symptoms. At 13 to 16 years after transplantation, dopaminergic innervation was restored to normal levels in basal ganglia and preserved in a number of extrabasal ganglia areas. These changes were associated with long-lasting relief of motor symptoms. Then, we assessed the integrity of their serotonergic and norepinephrine neuronal systems using [ 11C]DASB {[ 11C]3-amino-4- (2- dimethylaminomethylphenylthio) benzonitrile} positron emission tomography (PET) and 18F-dopa PET, respectively. 18F-Dopa uptake in the locus coeruleus was within the normal range. In contrast, [ 11C]DASB uptake in the raphe nuclei and regions receiving serotonergic projections was markedly reduced. These results indicate ongoing degeneration of serotonergic raphe nuclei and their projections to regions involved in the regulation of sleep, arousal, feeding, satiety, mood, and emotion. Our findings indicate that future cell-based therapies using fetal tissue or stem cells in PD patients may require additional grafts of serotonergic neurons to relieve nonmotor symptoms by restoring serotonergic neurotransmission in specific cerebral targets.

Politis M.,Imperial College London | Oertel W.H.,University of Marburg | Wu K.,Imperial College London | Quinn N.P.,University College London | And 6 more authors.
Movement Disorders | Year: 2011

Graft-induced dyskinesias are a serious complication after neural transplantation in Parkinson's disease. One patient with Parkinson's disease, treated with fetal grafts 14 years ago and deep brain stimulation 6 years ago, showed marked improvement of motor symptoms but continued to suffer from OFF-medication graft-induced dyskinesias. The patient received a series of clinical and imaging assessments. Positron emission tomography and single-photon emission computed tomography 14 years posttransplantation revealed an elevated serotonin/dopamine transporter ratio in the grafted striatum compatible with serotonergic hyperinnervation. Inhibition of serotonin neuron activity by systemic administration of a 5-HT 1A agonist suppressed graft-induced dyskinesias. Our data provide further evidence that serotonergic neurons mediate graft-induced dyskinesias in Parkinson's disease. Achieving a normal striatal serotonin/dopamine transporter ratio following transplantation of fetal tissue or stem cells should be necessary to avoid the development of graft-induced dyskinesias. © 2011 Movement Disorder Society.

Politis M.,Imperial College London | Wu K.,Imperial College London | Loane C.,Imperial College London | Quinn N.P.,University College London | And 6 more authors.
Science Translational Medicine | Year: 2010

Troublesome involuntary movements in the absence of dopaminergic medication, so-called off-medication dyskinesias, are a serious adverse effect of fetal neural grafts that hinders the development of cell-based therapies for Parkinson's disease. The mechanisms underlying these dyskinesias are not well understood, and it is not known whether they are the same as in the dyskinesias induced by L-dopa treatment. Using in vivo brain imaging, we show excessive serotonergic innervation in the grafted striatum of two patients with Parkinson's disease, who had exhibited major motor recovery after transplantation with dopamine-rich fetal mesencephalic tissue but had later developed off-medication dyskinesias. The dyskinesias were markedly attenuated by systemic administration of a serotonin [5-hydroxytryptamine (5-HT)] receptor (5-HT1A) agonist, which dampens transmitter release from serotonergic neurons, indicating that the dyskinesias were caused by the serotonergic hyperinnervation. Our observations suggest strategies for avoiding and treating graft-induced dyskinesias that result from cell therapies for Parkinson's disease with fetal tissue or stem cells.

Welinder E.,Lund Stem Cell Center | Ahsberg J.,Linköping University | Sigvardsson M.,Linköping University
Seminars in Immunology | Year: 2011

Even though B-lymphocyte development is one of the best understood models for cell differentiation in the hematopoetic system, recent advances in cell sorting and functional genomics has increased this understanding further. This has suggested that already early lymphoid primed multipotent progenitor cells (LMPPs) express low levels of lymphoid restricted transcripts. The expression of these genes becomes more pronounced when cells enter the FLT-3/IL-7 receptor positive common lymphoid progenitor (CLP) stage. However, the expression of B-lineage specific genes is limited to a B-cell restricted Ly6D surface positive subpopulation of the CLP compartment. The gene expression patterns also reflect differences in lineage potential and while Ly6D negative FLT-3/IL-7 receptor positive cells represents true CLPs with an ability to generate B/T and NK cells, the Ly6D positive cells lack NK cell potential and display a reduced T-cell potential in vivo. These recent findings suggest that the CLP compartment is highly heterogenous and that the point of no return in B-cell development may occur already in B220 -CD19 - cells. These findings have allowed for a better understanding of the interplay between transcription factors like EBF-1, PAX-5 and E47, all known as crucial for normal B-cell development. In this review, we aim to provide a comprehensive overview of B-cell fate specification and commitment based on the recent advances in the understanding of molecular networks as well as functional properties of early progenitor populations. © 2011 Elsevier Ltd.

Quere R.,Lund Stem Cell Center | Karlsson G.,Lund Stem Cell Center | Hertwig F.,Lund Stem Cell Center | Rissler M.,Lund Stem Cell Center | And 6 more authors.
Blood | Year: 2011

We studied leukemic stem cells (LSCs) in a Smad4-/- mouse model of acute myelogenous leukemia (AML) induced either by the HOXA9 gene or by the fusion oncogene NUP98-HOXA9. Although Hoxa9-Smad4 complexes accumulate in the cytoplasm of normal hematopoietic stem cells and progenitor cells (HSPCs) transduced with these oncogenes, there is no cytoplasmic stabilization of HOXA9 in Smad4-/- HSPCs, and as a consequence increased levels of Hoxa9 is observed in the nucleus leading to increased immortalization in vitro. Loss of Smad4 accelerates the development of leukemia in vivo because of an increase in transformation of HSPCs. Therefore, the cytoplasmic binding of Hoxa9 by Smad4 is a mechanism to protect Hoxa9-induced transformation of normal HSPCs. Because Smad4 is a potent tumor suppressor involved in growth control, we developed a strategy to modify the subcellular distribution of Smad4. We successfully disrupted the interaction between Hoxa9 and Smad4 to activate the TGF-β pathway and apoptosis, leading to a loss of LSCs. Together, these findings reveal a major role for Smad4 in the negative regulation of leukemia initiation and maintenance induced by HOXA9/NUP98-HOXA9 and provide strong evidence that antagonizing Smad4 stabilization by these oncoproteins might be a promising novel therapeutic approach in leukemia. © 2011 by The American Society of Hematology.

Lindvall O.,Lund University | Lindvall O.,Lund Stem Cell Center | Bjorklund A.,Neurobiology Unit
Neurotherapeutics | Year: 2011

The main pathology underlying motor symptoms in Parkinson's disease (PD) is a rather selective degeneration of nigrostriatal dopamine (DA) neurons. Intrastriatal transplantation of immature DA neurons, which replace those neurons that have died, leads to functional restoration in animal models of PD. Here we describe how far the clinical translation of the DA neuron replacement strategy has advanced. We briefly summarize the lessons learned from the early clinical trials with grafts of human fetal mesencephalic tissue, and discuss recent findings suggesting susceptibility of these grafts to the disease process long-term after implantation. Mechanisms underlying graft-induced dyskinesias, which constitute the only significant adverse event observed after neural transplantation, and how they should be prevented and treated are described. We summarize the attempts to generate DA neurons from stem cells of various sources and patient-specific DA neurons from fully differentiated somatic cells, with particular emphasis on the requirements of these cells to be useful in the clinical setting. The rationale for the new clinical trial with transplantation of fetal mesencephalic tissue is described. Finally, we discuss the scientific and clinical advancements that will be necessary to develop a competitive cell therapy for PD patients. © 2011 The American Society for Experimental NeuroTherapeutics, Inc.

Lindvall O.,Lund University | Lindvall O.,Lund Stem Cell Center | Kokaia Z.,Lund Stem Cell Center | Kokaia Z.,Lund University
Journal of Clinical Investigation | Year: 2010

Stem cell-based approaches have received much hype as potential treatments for neurodegenerative disorders. Indeed, transplantation of stem cells or their derivatives in animal models of neurodegenerative diseases can improve function by replacing the lost neurons and glial cells and by mediating remyelination, trophic actions, and modulation of inflammation. Endogenous neural stem cells are also potential therapeutic targets because they produce neurons and glial cells in response to injury and could be affected by the degenerative process. As we discuss here, however, significant hurdles remain before these findings can be responsibly translated to novel therapies. In particular, we need to better understand the mechanisms of action of stem cells after transplantation and learn how to control stem cell proliferation, survival, migration, and differentiation in the pathological environment.

Velasco-Hernandez T.,Lund Stem Cell Center | Hyrenius-Wittsten A.,Lund Stem Cell Center | Rehn M.,Lund Stem Cell Center | Bryder D.,Lund University | And 2 more authors.
Blood | Year: 2014

Self-renewal of hematopoietic stem cells (HSCs) and leukemia-initiating cells (LICs) has been proposed to be influenced by low oxygen tension (hypoxia). This signaling, related to the cellular localization inside the bone marrow niche and/or influenced by extrinsic factors, promotes the stabilization of hypoxia-inducible factors (HIFs). Whether HIF-1α can beused as a therapeutic target in the treatment of myeloid malignancies remains unknown. We have used 3 different murine models to investigate the role of HIF-1α in acute myeloid leukemia (AML) initiation/progression and self-renewal of LICs. Unexpectedly, we failed to observe a delay or prevention of disease development from hematopoietic cells lacking Hif-1α. In contrast, deletion of Hif-1α resulted in faster development of the disease and an enhanced leukemia phenotype in some of the investigated models. Our results therefore warrant reconsideration of the role of HIF-1α and, as a consequence, question its generic therapeutic usefulness in AML. © 2014 by The American Society of Hematology.

Lindvall O.,Lund University | Lindvall O.,Lund Stem Cell Center | Kokaia Z.,Lund University | Kokaia Z.,Lund Stem Cell Center
Stroke | Year: 2011

Stem cell-based approaches hold much promise as potential novel treatments to restore function after stroke. Studies in animal models have shown that stem cell transplantation can improve function by replacing neurons or by trophic actions, modulation of inflammation, promotion of angiogenesis, remyelination and axonal plasticity, and neuroprotection. Endogenous neural stem cells are also potential therapeutic targets because they produce new neurons after stroke. Clinical trials are ongoing but there is currently no proven stem cell-based therapy for stroke. Preclinical studies and clinical research will be needed to optimize the therapeutic benefit and minimize the risks of stem cells in stroke. © 2011 American Heart Association, Inc.

Ahlenius H.,Lund Stem Cell Center | Kokaia Z.,Lund Stem Cell Center
Methods in molecular biology (Clifton, N.J.) | Year: 2010

Neural stem cells are defined as cells that either gives rise to or derives from the cells of the central nervous system and have the unique properties of stem cells, i.e. self-renewal and multipotentiality. One of the widely used methods of expanding neural stem cells under culture conditions is based on the capacity of these cells to divide continuously when cultured in serum-free medium supplemented with various growth factors. One common method used is to grow neural stem cells as free-floating aggregates of cells called neurospheres. Neurospheres can be generated from several structures of the embryonic and adult mammalian brain. Although viable lines can be generated from crude extracts of brain, a precise dissection is crucial to get a pure population of cells. Here we describe methods for dissection, isolation and generation of neurospheres from embryonic ganglionic eminences and adult subventricular zone of mice and rats.

Loading Lund Stem Cell Center collaborators
Loading Lund Stem Cell Center collaborators