Entity

Time filter

Source Type

Austin, TX, United States

Luminex Corporation is a biotechnology company based in Austin, Texas, with offices in Australia, Toronto and the Netherlands. Luminex develops, manufactures and markets proprietary biological testing technologies with applications throughout the life-science industry. Patrick J. Balthrop, Sr. has served as Luminex's President and Chief Executive Officer since May, 2004. Luminex was recently recognized by Forbes magazine as one of the top 25 fastest growing technology companies in the US. Wikipedia.


Patent
Luminex Corporation | Date: 2015-08-28

Apparatuses, systems and methods for using assay preparation plates comprising wells with two trenches are presented. More specifically, well plates are presented that comprising an array of wells configured to retain a plurality of beads suspended in a fluid during an assay procedure, each well in the array comprising a first trench and a second trench, wherein the working volume of each well is between about 25 uL and about 10 mL.


Patent
Luminex Corporation | Date: 2015-01-22

Methods and compositions for the detection and quantification of nucleic acids are provided. In one embodiment, a sample is contacted with a primer complementary to a first region of a target nucleic acid and a probe complementary to a second region of the target nucleic acid downstream of the first region under conditions suitable for hybridization of the target nucleic acid with the primer and the probe. The probe in this embodiment comprises a fluorophore and is attached to a solid support. The hybridized probe is cleaved with a nucleic acid polymerase having exonuclease activity to release the reporter from the solid support. The presence of the target nucleic acid is then detected and optionally quantified by detecting a decrease in signal from the reporter on the solid support.


Patent
Luminex Corporation | Date: 2015-08-14

Nucleic acid constructs and methods that provide superior prevention of primer-dimers and other artifacts of false priming events are disclosed. In particular, there is disclosed a hairpin primer having a target-specific primer region, wherein the target-specific region comprises a target-binding dependent cleavage sequence; a first stem forming region 5 of the target-specific primer region; and a second stem forming region 3 of the target-specific primer region, wherein the second stem forming region is complementary to the first stem forming region. Methods of using the hairpin primer to amplify a target nucleic acid are also disclosed.


Methods and compositions for the detection and quantification of nucleic acids are provided. In certain embodiments, methods involve the use of cleavable probes that comprise a ribonucleotide position that is susceptible to endoribonuclease (e.g., RNase H) cleavage in the presence of target nucleic acid molecules. Probes of the embodiments may also comprise non-natural nucleotide linked to a reporter and/or quenching moiety.


An apparatus includes a housing, a reaction vial and a transfer mechanism. The housing defines a first flow path and a second flow path. The housing has transfer port defining an opening in fluid communication with the second flow path and a volume outside of the housing. The transfer port includes a flow control member to limit flow through the opening. The reaction vial is coupled to the housing and defines a reaction volume, which is in fluid communication with the transfer port via the second flow path. The transfer mechanism is configured to transfer a sample from an isolation chamber of an isolation module to the reaction chamber via at least the first flow path when the transfer mechanism is actuated. The transfer mechanism configured to produce a vacuum in the reaction vial to produce a flow of a sample from the isolation chamber to the reaction volume.

Discover hidden collaborations