Lulea, Sweden

Luleå University of Technology or Luleå tekniska universitet of Sweden is Scandinavia's northernmost university of technology. It has four campuses, located in Luleå , Kiruna , Skellefteå and Piteå . Wikipedia.


Time filter

Source Type

Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: INFRADEV-3-2015 | Award Amount: 31.03M | Year: 2015

The nations of Europe are distributed around some of the most complex and dynamic geological systems on the planet and understanding these is essential to the security of livelihoods and economic power of Europeans. Many of the solutions to the grand challenges in the geosciences have been led by European scientists the understanding of stratigraphy (the timing and distribution of layers of sediment on Earth) and the discovery of the concept of plate tectonics being among the most significant. Our ability to monitor the Earth is rapidly evolving through development of new sensor technology, both on- and below-ground and from outer space; we are able to deliver this information with increasing rapidity, integrate it, provide solutions to geological understanding and furnish essential information for decision makers. Earth science monitoring systems are distributed across Europe and the globe and measure the physico-chemical characteristics of the planet under different geological regimes. EPOS will bring together 24 European nations and combine national Earth science facilities, the associated data and models together with the scientific expertise into one integrated delivery system for the solid Earth. This infrastructure will allow the Earth sciences to achieve a step change in our understanding of the planet; it will enable us to prepare for geo-hazards and to responsibly manage the subsurface for infrastructure development, waste storage and the use of Earths resources. With a European Research Infrastructure Consortium (ERIC) to be located in Rome (Italy), EPOS will provide an opportunity for Europe to maintain world-leading European Earth sciences and will represent a model for pan-European federated infrastructure.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: FOF-11-2016 | Award Amount: 7.99M | Year: 2016

NIMBLE: collaboration Network for Industry, Manufacturing, Business and Logistics in Europe will develop the infrastructure for a cloud-based, Industrie 4.0, Internet-of-things-enabled B2B platform on which European manufacturing firms can register, publish machine-readable catalogs for products and services, search for suitable supply chain partners, negotiate contracts and supply logistics, and develop private and secure B2B and M2M information exchange channels to optimise business work flows. The infrastructure will be developed as open source software under an Apache-type, permissive license. The governance model is a federation of platforms for multi-sided trade, with mandatory interoperation functions and optional added-value business functions that can be provided by third parties. This will foster the growth of a net-centric business ecosystem for sustainable innovation and fair competition as envisaged by the Digital Agenda 2020. Prospective NIMBLE providers can take the open source infrastructure and bundle it with sectoral, regional or functional added value services and launch a new platform in the federation. Internet platforms need fast adoption rates and the work plan reflects this: we start attracting early adopters from day one and develop the initial, working platform in year one. Added-value business functions follow in year two and final validation at large scale, involving hundreds of external firms, will happen in year three. Our adoption plan is designed to enable two or more platform providers at the end of the project, and to have 1000 to 2000 enterprises connected to the overall ecosystem at that point. NIMBLE has 17 partners grouped around 3 main activities: developing the infrastructure, running a platform adoption programme, and validating the platform with 4 supply chains (white goods, wooden houses, fashion fabrics, and child care furniture). NIMBLE will give manufacturing SMEs in Europe a stable and sustainable digital ecosystem.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-RISE | Phase: MSCA-RISE-2016 | Award Amount: 1.08M | Year: 2017

The aim of this Project is to create an International and Intersectoral network to facilitate the exchange of staff to progress developments in reminding technologies for persons with dementia which can be deployed in smart environments. The focus will be on developing staff and partner skills in the areas of user centered design and behavioral science coupled with improved computational techniques which in turn will offer more appropriate and efficacious reminding solutions. This will be further supported through research involving user centric studies into the use of reminding technologies and the theory of behaviour change to improve compliance of usage. A program of work has been established to maximise the transfer of knowledge between the different sectors offering a range of development and training opportunities for staff. Industrial staff will benefit from bi-lateral exchanges from the technical domains of context aware reminding technologies, soft computing, aware intelligent systems, pervasive computing and the psychological domain of behaviour change. The academic beneficiaries will benefit from gaining experience in the development of industrial standard software conforming to ISO and medical standards, engagement with stakeholders through a user centred design process and working with organisations delivering care to the elderly and persons with dementia. The consortium is comprised of an International network of beneficiaries and partners, all of which are committed to progressing the notion of reminding technologies within smart environments.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: SC5-13-2016-2017 | Award Amount: 6.98M | Year: 2016

The main economic, technological and environmental challenges of small mining include reducing high investment costs, reducing generation of waste and large tailings, identifying and addressing environmental impacts, and improving flexibility, automation and safety of operations. However, at the moment, there is no quick-fix available to reduce the environmental impact from mines, and it is neither realistic to expect production solutions very distant from todays technologies. Considering that the present mining technology is based on rock blasting and mobile mining equipment for loading and transportation, the major challenge is to generate a new sustainable systemic solution that affects positively the relevant mining value chain. SLIM aims to develop a cost-effective and sustainable selective low impact mining solution based on non-linear rock mass fragmentation by blasting models, airborne particulate matter, vibration affections and nitrate leaching mitigation actions for exploitation of small mineral deposits (including those with chemically complex ore-forming phases) through a new generation of explosives and an advanced automatic blast design software based on improved rock mass characterisation and fragmentation models for optimum fragmentation and minimum rock damage and far-field vibrations. SLIM consortium is led by UPM (es), with LTU (se), MUL (at) and TUG (at) as Research Insitutions, 3GSM (at - Rock fragmentation and blasting software), MAXAM (es - Explosives), ORGIVA (es - Fluorite mine) and ERZBERG (at - Iron mine) and ARNO (es - Quarry) as validators in relevant environment. BRGM (fr), INVESTORNET (dk), MINPOL (at), and ZABALA (es) complement the Environmental and Economic assessments, the Communication and Dissemination activities and Social Awareness actions. SLIM addresses the following issue: a) Sustainable selective low impact mining (2016), it has a planned duration of 48 months and a budget of 6,979,200 requesting 6,979,200 of EU funding.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: LCE-17-2015 | Award Amount: 9.63M | Year: 2016

The share of renewable energy is growing rapidly driven by the objective to reduce greenhouse gas emissions. The amount of electric power which can be supplied to the grid depends on the time of the day and weather conditions. A conventional fleet of thermal power plants is required to compensate for these fluctuations before large scale energy storage technologies will be mature and economically viable. All power market projections expect this to be the case for the next 50 years at least. For a strong expansion of renewables, this fleet has to operate flexibly at competitive cost. Current power plants cannot fill this role immediately without impeding their efficiency and engine lifetime through increased wear and damage induced by the higher number of (shorter) operating/loading cycles. New technologies need to be introduced to balance demand peaks with renewable output fluctuations at minimal fuel consumption and emissions without negative effects on cycling operation. The FLEXTURBINE partners have developed a medium to long term technology roadmap addressing future and existing power plants. The FLEXTURBINE project presented hereafter is the first step in such technology roadmap and consists of: (1) new solutions for extended operating ranges to predict and control flutter, (2) improved sealing and bearing designs to increase turbine lifetime and efficiency by reducing degradation/damages, and (3) an improved lifecycle management through better control and prediction of critical parts to improve competitive costs by more flexible service intervals and planned downtime, and by reducing unplanned outages. In all areas, individual technologies will be developed from TRL 3 to TRL 4-6. FLEXTURBINE brings together the main European turbine manufacturers, renowned research institutes and universities. It involves plant and transmission system operators to include user feedback and to prepare the take-up of the FLEXTURBINE technologies in power plants world-wide.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: MG-2.1-2014 | Award Amount: 18.00M | Year: 2015

IN2RAIL is to set the foundations for a resilient, consistent, cost-efficient, high capacity European network by delivering important building blocks that unlock the innovation potential that exists in SHIFT2RAIL: innovative technologies will be explored and resulting concepts embedded in a systems framework where infrastructure, information management, maintenance techniques, energy, and engineering are integrated, optimised, shared and exploited. IN2RAIL will make advances towards SHIFT2RAIL objectives: enhancing the existing capacity fulfilling user demand; increasing the reliability delivering better and consistent quality of service; reducing the LCC increasing competitiveness of the EU rail system. To achieve the above, a holistic approach covering Smart Infrastructures, Intelligent Mobility Management (I2M)and Rail Power Supply and Energy Management will be applied. Smart Infrastructure addresses the fundamental design of critical assets - switches and crossings and tracks. It will research components capable of meeting future railway demands and will utilise modern technologies in the process. Risk and condition-based LEAN approaches to optimise RAMS and LCC in asset maintenance activities will be created to tackle the root causes of degradation. I2M researches automated, interoperable and inter-connected advanced traffic management systems; scalable and upgradable systems, utilising standardised products and interfaces, enabling easy migration from legacy systems; the wealth of data and information on assets and traffic status; information management systems adding the capability of nowcasting and forecasting of critical asset statuses. Rail Power Supply and Energy Management create solutions to improve the energy performance of the railway system. Research on new power systems characterised by reduced losses and capable of balancing energy demands, along with innovative energy management systems enabling accurate and precise estimates of energy flows.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: FOF-11-2016 | Award Amount: 5.08M | Year: 2016

Daedalus is conceived to enable the full exploitation of the CPS concept of virtualized intelligence, through the adoption of a completely distributed automation platform based on IEC-61499 standard, fostering the creation of a Digital Ecosystem that could go beyond the current limits of manufacturing control systems and propose an ever-growing market of innovative solutions for the design, engineering, production and maintenance of plants automation. The following objectives will be reached: -)Ease the conception, development and distribution of intelligence into CPS for real-time execution of orchestrated manufacturing tasks; -)Foster interoperability of CPS from different vendors at orchestration-level (= between CPS); -)Simplify the design, implementation and integration of optimal coordinating control intelligence of CPS; -)Enable near-real-time co-simulation of manufacturing systems as a fully integrated service of a CPS; -)Create a Digital Marketplace to simplify the matchmaking between offer and demand within the Ecosystem; -)Conceive a multi-sided business model for the Automation Ecosystem and the corresponding business plans for its Complementors; -)Foster the widespread acceptance of the Ecosystem platform to guarantee success and impact of Daedalus multi-sided market. The project approach is based on 3 technological pillars, one platform pillar and a final ecosystem pillar: 1)IEC61499-based reconfigurable automation platform for distributed orchestration of interoperable CPS; 2)Simulation-as-a-service for integrated near-real-time co-simulation of CPS behavioural models; 3)Advanced SDKs for simplified design of hierarchically distributed optimal control applications; 4)Digital Marketplace for the creation of an interdependent ecosystem of automation solutions providers; 5)Proof-of-concept showcases to accelerate the involvement of complementors and the maturation of the Ecosystem.


Grant
Agency: Cordis | Branch: H2020 | Program: CSA | Phase: IoT-02-2016 | Award Amount: 1.88M | Year: 2017

End-user and societal acceptance is critical to the success of the IoT large scale pilots. U4IoT combines complementary RRI-SSH expertise encompassing social and economic sciences, communication, crowdsourcing, living labs, co-creative workshops, meetups, and personal data protection to actively engage end-users and citizens in the large scale pilots. It will: Develop toolkit for LSPs end-user engagement and adoption, including online resources, privacy-compliant crowdsourcing tools, guidelines and an innovative privacy game for personal data protection risk assessment and awareness, online training modules. Direct Support to mobilize end-user engagement with co-creative workshops and meetups, trainings, Living Labs support, and an online pool of experts to address LSPs specific questions. Analyse societal, ethical and ecological issues and adoption barriers related to the pilots with end-users and make recommendations for tackling IoT adoption barriers, including educational needs and sustainability models for LSPs and future IoT pilots deployment in Europe. Support communication, knowledge sharing and dissemination with an online portal and interactive knowledge base gathering the lessons learned, FAQ, tools, solutions and end-user feedbacks. The U4IoT platform will support IoT take-up in Europe by better aligning it with end-user and societal expectations, mutualizing information and learning experiences, and improving communication with the public,- enabling Europe to take the lead in IoT user (and market) adoption. U4IoT will work in close cooperation with the other CSA, AIOTI and the IoT Forum who will maintain the platform after the end of the project to continue serving the European IoT community.


Grant
Agency: Cordis | Branch: H2020 | Program: CSA | Phase: SC5-13c-2015 | Award Amount: 2.00M | Year: 2016

MIN-GUIDE is a project addressing the need for a secure and sustainable supply of minerals in Europe by developing a Minerals Policy Guide. The key objectives of the project are (1) providing guidance for EU and MS minerals policy, (2) facilitating minerals policy decision making through knowledge co-production for transferability of best practice minerals policy, and (3) fostering community and network building for the co-management of an innovation catalysing minerals policy framework. This will be achieved through a systematic profiling and policy benchmarking of relevant policy and legislation in Europe, which includes the identification of innovation friendly best practices through quantitative indicators and a qualitative analysis country-specific framework conditions, as well as through the compilation of minerals statistics and reporting systems. These insights will form the basis for developing an interactive, tailor-made online Minerals Policy Guide. Another key feature of the MIN-GUIDE project will be knowledge co-production for minerals policy decision makers through Policy Laboratories exploring these best practice examples along the whole mineral production value chain (exploration and extraction, processing, recycling and mine closure). Furthermore, MIN-GUIDE will facilitate the building of a sustainable minerals policy stakeholder network through this knowledge co-production and utilization in Policy Laboratories as well as through three major Conferences. These Conferences will explore the minerals governance framework, work on recommendations for promoting innovation along the whole minerals production value chain, and put it into the wider context of the circular economy. The MIN-GUIDE project and in particular the dissemination of the Minerals Policy Guide to specific target audiences will have the expected impact of guiding EU MS and EU level minerals policy-making towards a more coherent, transparent and innovation-catalysing framework.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: FOF-11-2016 | Award Amount: 4.49M | Year: 2016

Despite the proclaimed benefits (i.e. scalability, reliability, cost-effectiveness) of Future Internet (FI) technologies (i.e. edge & cloud computing, IoT/CPS) for factory automation, their adoption from manufacturers remains low for various reasons, including technology issues (e.g., poor situation awareness, limited deployments, no standards-based reference implementations) and the lack of a smooth migration path from legacy systems. FAR-EDGE is a joint effort of leading experts in manufacturing, industrial automation and FI technologies towards the smooth and wider adoption of virtualized factory automation solutions based on FI technologies. It will research a novel factory automation platform based on edge computing architectures and IoT/CPS technologies. FAR-EDGE will provide a reference implementation of emerging standards-based solutions for industrial automation (RAMI 4.0, Industrial Internet Consortium reference architecture), along with simulation services for validating automation architectures and production scheduling scenarios. FAR-EDGE will lower the barriers for manufacturers to move towards Industrie 4.0, as a means of facilitating mass-customization and reshoring. Emphasis will be paid in the study of migration options from legacy centralized architectures, to emerging FAR-EDGE based ones. FAR-EDGE will be validated in real-life plants (VOLVO, WHIRLPOOL) in the scope of user-driven scenarios (business-cases) for mass-customization and reshoring, where tangible improvements relating to reliability, productivity increase, quality cost, reduction in adaptation effort/costs will be measured and evaluated. Also, a wide range of migration scenarios will be evaluated in the scope of a CPS manufacturing testbed. FAR-EDGE will also establish a unique ecosystem for FI factory automation solutions, which will bring together the FoF and FI communities (e.g., EFFRA, Industrie 4.0, AIOTI, ARTEMIS JU) and will ensure sustainability of FAR-EDGE results.

Loading Lulea University of Technology collaborators
Loading Lulea University of Technology collaborators